
Improving Deep Learning with
Probabilistic Approaches

James Urquhart Allingham
Darwin College

This dissertation is submitted for the degree of
Doctor of Philosophy

February 2024





To my brother, Taliesin,
without whom this would never have happened.





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the preface and specified in the text. It
is not substantially the same as any work that has already been submitted, or, is being
concurrently submitted, for any degree, diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in the
preface and specified in the text. It does not exceed the prescribed word limit for the
relevant Degree Committee.

James Urquhart Allingham
February 2024





Acknowledgements

This thesis is the result of the support, encouragement, guidance, collaboration, and
friendship of many people. There are certainly too many people to thank individually,
but I will try to do so anyway.

Firstly, I must thank Javier Antorán. Without him, none of this work would have
been possible. From the very beginning of the PhD, Javi has been a great source of
inspiration and friendship. I have learnt a lot—both about machine learning and in
general—from him. Even on projects that we did not work directly together, his impact
can be seen. I am very grateful to have been assigned the seat behind him at the start of
this journey, that he suggested we write a short workshop paper together, and that this
led to a fruitful collaboration and friendship.

I must also thank my supervisor José Miguel Hernández-Lobato for his guidance,
support, and encouragement throughout my PhD. Miguel has given me the freedom
to pursue my own research interests and has always been available to discuss ideas
and provide feedback. He has always had my best interests at heart. On the topic
of supervisors and advisors, several others need to be thanked. Eric Nalisnick, my
ELLIS co-supervisor, for his guidance and for providing me an opportunity to visit
him in Amsterdam. I’ve thoroughly enjoyed our collaboration. Carl Rasmussen, my
advisor, for his support and for always being available for an early morning run around
Cambridge. And, Christian Steinruecken, who supervised my MPhil (Allingham, 2018),
for encouraging me to pursue a PhD, and for putting me in a position to do so thanks to
his generosity during (and after) the MPhil. A big thanks to Carl Rasmussen and Mark
van der Wilk for examining this thesis—I thoroughly enjoyed the viva, and the thesis is
certainly better for their input.

Rodolphe Jennaton, who hosted me for my first internship at Google Brain. Rodolphe
was an incredible mentor and showed me what a joy a good manager-managee relationship
can be. Even though Covid forced us to work remotely, working with Rodolphe was
always a pleasure, and I would suggest everyone try it at least once! Jie Ren, who hosted
me for my second internship at Google Brain, was also amazing. Jie always believed in
me and my abilities, and was great fun to work with.



viii

Collaboration has been the highlight of my PhD and is for me the most enjoyable
part of research. I’ve been lucky to have worked with a huge number of fantastic
people from whom I’ve learned a lot. They are, in approximate order of appearance,
Javier Antorán, José Miguel Hernández-Lobato, Erik Daxberger, Eric Nalisnick, Florian
Wenzel, Zelda Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Vincent Fortuin,
Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe
Jenatton, Mark Collier, Jeremiah Liu, Effrosyni Kokiopoulou, Chelsea Murray, David
Janz, Riccardo Barbano, Shreyas Padhy, Metod Jazbec, Dan Zhang, Jie Ren, Michael
Dusenberry, Xiuye Gu, Yin Cui, Bruno Mlodozeniec, David Krueger, and Richard Turner.

The Deep Learning Indaba community has been a huge source of support and
inspiration. I would especially like to thank Ulrich Paquet, Avishkar Bhoopchand,
Stephan Gouws, and Benji Rosman for their friendship and their generosity. They were
always available to help me succeed in any way they could.

The Computational and Biological Learning group in Cambridge has provided a
wonderful collaborative environment for research. I want to thank all of the members of
the group, but especially Austin Tripp, Erik Daxberger, Talay Cheema, Jonny So, Valerii
Likhosherstov, Marine Schimel, Javier Antorán, Kris Jensen, and Umang Bhatt, who
started the PhD journey with me. My almost 6-month visit to AMLab at the University
of Amsterdam was a highlight of my PhD, and I would like to thank everyone there for
the fun times and the great discussions. Darwin College has been a wonderful home in
Cambridge where I’ve thoroughly enjoyed the warm, relaxed, and friendly atmosphere.

I’ve had several teachers who have had a huge impact on my life. I would like to thank
Bev McQueen, the late Louis Pasques, Ginny de Villiers, Andre de Wilzem, Barbara
Heron, and Scott Hazelhurst for their support and encouragement. I would also like to
thank Peter Loudon for his generous guidance and support.

This PhD would not have been possible without the financial support of the EPSRC,
the Michael E. Fisher Studentship in Machine Learning, and the Qualcomm Innovation
Fellowship. I am very grateful for their support.

Last, but certainly not least, I would like to thank my family and friends. My parents,
Rob, Trish, and Richard who have always supported me. My sister Maria, who has
lovingly kept me in check. My partner, Mimy who has been understanding, supportive,
motivating, and, when needed, happy to help me escape the madness of the PhD. Carl,
Paul, and Julian, whose friendships I will always cherish, and have all had an impact on
my academic journey. Marine and Sonia, who helped keep me sane during Covid. And of
course, Tali, who was instrumental in the journey that brought me here. I love you all.



Abstract

Despite its successes in scaling to real-world problems, deep learning is not without
flaws. In particular, it struggles with uncertainty quantification and data efficiency.
Probabilistic methods, while currently somewhat underappreciated by the wider machine
learning community, provide calibrated uncertainty estimates and tend to shine in the
low-data regime. It would seem that probabilistic methods complement deep learning.
Thus, we ask the question, “How can probabilistic approaches be used to improve deep
learning?”

On the topic of uncertainty estimation, we have three sets of contributions. Firstly, we
show that probabilistic inference over the depth of a neural network not only side-steps
challenges involved with scaling inference to the large weight spaces of modern neural
networks but also provides well-calibrated uncertainty estimates and robust predictions.
Furthermore, we leverage the uncertainty over depth for applications such as neural
architecture search and active learning.

Secondly, we develop an alternative framework for dealing with these large weight
spaces. We perform inference over a small subset of the weights in a neural network.
We show that using crude approximations to select the subset of the weights is not very
harmful compared to using them for inference over the weights. In particular, we find
that capturing correlations between weights is essential for uncertainty estimation.

Thirdly, we investigate uncertainty estimation in sparse Mixture-of-Experts models.
These models learn multiple diverse explanations of the data. We show that averaging
these explanations results in robust predictions with well-calibrated uncertainty estimates.
We provide an algorithm for doing so without incurring a heavy computational cost.

Finally, on the topic of data efficiency in deep generative models, we develop a
generative model that learns which symmetry transformations are present in a dataset.
This symmetry-aware generative model can be used to imbue standard deep generative
models with inductive biases about the underlying generative process of the data. We
experimentally show that this improves data efficiency.





Table of contents

List of figures xvii

List of tables xxi

List of terms xxiii

List of symbols xxvii

1 Introduction 1
1.1 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 7
2.1 Uncertainty Estimation in Deep Learning . . . . . . . . . . . . . . . . . . 7

2.1.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Computing Uncertainties . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Evaluating Uncertainty Estimates . . . . . . . . . . . . . . . . . . 15

2.2 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Normalising Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Depth Uncertainty in Neural Networks 25
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Depth Uncertainty Networks . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Probabilistic Model: Depth as a Random Variable . . . . . . . . . 28
3.2.2 Inference in DUNs . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Comparing MLL and VI training . . . . . . . . . . . . . . . . . . 31



xii Table of contents

3.3.2 Toy Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Tabular Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 DUNs for Neural Architecture Search . . . . . . . . . . . . . . . . 43
3.3.6 DUNs for Active Learning . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Bayesian Deep Learning via Subnetwork Inference 53
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Subnetwork Posterior Approximation . . . . . . . . . . . . . . . . . . . . 55
4.3 Background: Linearised Laplace . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Linearised Laplace Subnetwork Inference . . . . . . . . . . . . . . . . . . 59
4.5 Subnetwork Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 How does Subnetwork Inference preserve Posterior Predictive Un-
certainty? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.2 Subnetwork Inference in Large Models vs Full Inference over Small
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.3 Image Classification under Distribution Shift . . . . . . . . . . . . 67
4.7 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Sparse-MoEs meet Efficient Ensembles 77
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Vision Transformers and Sparse MoEs . . . . . . . . . . . . . . . 80
5.2.2 Ensembles of Neural Networks . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Pre-training and Fine-tuning . . . . . . . . . . . . . . . . . . . . . 82

5.3 Sparse MoEs meet Ensembles . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Efficient Ensemble of Experts . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 Ablation Studies: Partitioning and Tiling . . . . . . . . . . . . . . 86
5.4.3 Comparison with other Efficient Ensembling Strategies . . . . . . 89

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Table of contents xiii

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 A Generative Model of Symmetry Transformations 97
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Symmetry-aware Generative Model (SGM) . . . . . . . . . . . . . . . . . 99

6.2.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Further Intuitions and Motivations . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Modelling Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.1 Learning Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.2 VAE Data Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusion 117
7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 123

Appendix A DUN Details 151
A.1 Shape and Size Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2.1 Toy Dataset Experiments . . . . . . . . . . . . . . . . . . . . . . 152
A.2.2 Regression Experiments . . . . . . . . . . . . . . . . . . . . . . . 153
A.2.3 Image Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.2.4 NAS Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.5 Active Learning Experiments . . . . . . . . . . . . . . . . . . . . 159
A.2.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendix B Subnetwork Inference Details 163
B.1 Updating the prior precision for uncertainty estimation with subnetworks 163
B.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2.1 Toy Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2.2 UCI Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2.3 Image Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



xiv Table of contents

Appendix C Sparse MoE Details 169
C.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.1.1 ViT Model Specifications . . . . . . . . . . . . . . . . . . . . . . . 169
C.1.2 Upstream Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.1.3 Downstream Setting . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.1.4 Hyperparameter Sweep for Fine-tuning . . . . . . . . . . . . . . . 170
C.1.5 Details about the (Linear) Few-shot Evaluation . . . . . . . . . . 170
C.1.6 List of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.1.7 Sparse MoEs meet Ensembles Experimental Details . . . . . . . . 173
C.1.8 Multiple Predictions without Tiling or Partitioning Details . . . . 173

C.2 Compatibility and Adaptation of the Upstream Checkpoints . . . . . . . 173
C.2.1 Efficient Ensemble of Experts . . . . . . . . . . . . . . . . . . . . 174
C.2.2 Batch Ensembles (BE) . . . . . . . . . . . . . . . . . . . . . . . . 174
C.2.3 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.3 Implementation Details of Efficient Ensemble of Experts . . . . . . . . . 175
C.3.1 Training Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.3.2 Auxiliary Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.3.3 Memory Requirements versus V-MoE . . . . . . . . . . . . . . . . 176

C.4 Efficient Ensemble of Experts and V-MoE Relative Improvements per ViT
Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.5 From Batch Ensembles to Sparse MoEs . . . . . . . . . . . . . . . . . . . 179
C.6 Batch Ensembles versus Efficient Ensemble of Experts . . . . . . . . . . . 179
C.7 Efficient Ensemble Comparisons . . . . . . . . . . . . . . . . . . . . . . . 180

C.7.1 Batch Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.7.2 MC Dropout V-MoEs . . . . . . . . . . . . . . . . . . . . . . . . 182
C.7.3 MIMO V-MoEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.8 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 184
C.8.1 Static versus Adaptive Combination . . . . . . . . . . . . . . . . . 184
C.8.2 An Additional Motivating Experiment – Deep Ensembles of V-MoE

with Fewer Experts . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.8.3 The Roles of Ensemble Diversity and Individual Model Performance186
C.8.4 Extended Results for Few-shot Learning . . . . . . . . . . . . . . 188
C.8.5 Extended Results for OOD Detection . . . . . . . . . . . . . . . . 188
C.8.6 Extended Results for ImageNet . . . . . . . . . . . . . . . . . . . 189
C.8.7 Additional CIFAR10, CIFAR100, Flowers, and Pets Results . . . 189



Table of contents xv

C.8.8 Efficient Ensemble of Experts and V-MoE with larger values of K
and M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.8.9 Extended Results for the Tiling with Increasing Parameter Sharing
Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.8.10 Summary for NLL under Distribution Shift . . . . . . . . . . . . . 200
C.8.11 Preliminary ImageNet Results without Pre-training . . . . . . . . 200
C.8.12 Upstream & Downstream versus Downstream-only Ensembles . . 201

C.9 FLOPs Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.10 Additional Algorithm Overview Diagrams . . . . . . . . . . . . . . . . . 206

Appendix D Generative Model of Symmetries Details 209
D.1 Connections to MLL Optimization . . . . . . . . . . . . . . . . . . . . . 209
D.2 Further Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 212
D.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.3.1 MNIST under affine transformations . . . . . . . . . . . . . . . . 215
D.3.2 MNIST under colour transformations . . . . . . . . . . . . . . . . 217
D.3.3 dSprites under affine transformations . . . . . . . . . . . . . . . . 217
D.3.4 GalaxyMNIST under affine and colour transformations . . . . . . 219
D.3.5 PatchCamelyon under affine and colour transformations . . . . . . 220
D.3.6 VAE, AugVAE, and InvVAE . . . . . . . . . . . . . . . . . . . . . 221
D.3.7 Parametrisations of Symmetry transformations . . . . . . . . . . . 222

D.4 Comparisons to LieGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.5 PatchCamelyon — Boundary Effects . . . . . . . . . . . . . . . . . . . . 224
D.6 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225





List of figures

2.1 VAE generative and inference models. . . . . . . . . . . . . . . . . . . . . 22

3.1 DUN intuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 DUN graphical and computational models. . . . . . . . . . . . . . . . . . 27
3.3 MLL vs. ELBO training of DUN. . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Toy dataset comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 DUN depth experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 DUN vs. Ensembles example. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Quartiles for results on UCI regression datasets across standard splits. . . 38
3.8 Quartiles for results on UCI regression datasets across gap splits. . . . . 39
3.9 Rotated MNIST and Corrupted CIFAR10 results. . . . . . . . . . . . . . 40
3.10 MNIST diversity experiment. . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Rejection classification results. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 Timing experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 ImageNet results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.14 NAS on the spirals dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.15 Approximate posterior over depths for LDNs trained on image datasets. . 45
3.16 DDNs vs. LDNs using different pruning strategies and maximum depths. 47
3.17 DUN depth posteriors with small and large datasets during active learning. 49
3.18 NLL vs. number of training points for DUNs, MCDO, and MFVI evaluated

on UCI datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Schematic illustration of our proposed subnetwork inference approach. . . 55
4.2 Predictive distributions (mean ± std. dev.) for 1D regression. . . . . . . 64
4.3 Mean test LL values obtained on UCI datasets across all splits. . . . . . . 65
4.4 Results on the rotated MNIST and the corrupted CIFAR benchmarks. . 68
4.5 Subnetwork sizes between 100-40K vs. Ensembles and Diagonal Laplace. 70
4.6 MNIST rotation results for ResNet-50. . . . . . . . . . . . . . . . . . . . 70



xviii List of figures

4.7 Results for deep ensembles with large numbers of ensemble members. . . 71
4.8 Rejection-classification plots. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 End-to-end overview of e3 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Increasing static (M) and adaptive (K) ensembling on ImageNet. . . . . 83
5.3 ImageNet evaluation for ViT and V-MoE ensembles of size. . . . . . . . . 84
5.4 ImageNet NLL and mean 10-shot error for e3 vs. baselines. . . . . . . . . 91
5.5 ECE on ImageNet and variants for e3 vs. baselines. . . . . . . . . . . . . 91
5.6 OOD detection for e3 vs. baselines. . . . . . . . . . . . . . . . . . . . . . 91
5.7 NLL under distribution shift for e3 vs. baselines. . . . . . . . . . . . . . 93
5.8 CIFAR results for e3 vs. baselines. . . . . . . . . . . . . . . . . . . . . . 94

6.1 An example symmetry-aware generative process. . . . . . . . . . . . . . . 98
6.2 SGM graphical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Orbits due to horizontal shift transformations. . . . . . . . . . . . . . . . 100
6.4 Self-supervised symmetry learning objective. . . . . . . . . . . . . . . . . 101
6.5 Simple vs. flexible transformation parameter distributions. . . . . . . . . 105
6.6 Transformation parameter distributions with and without dependence on

the prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.7 Transformation parameter distributions for different levels of invariance in

the prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.8 Test examples, their prototypes, and resampled versions. . . . . . . . . . 109
6.9 Test examples, their prototypes, and corresponding affine transformation

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.10 Iterative prototype inference. . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.11 Incorporating symmetries improves VAE data efficiency. . . . . . . . . . . 111
6.12 GalaxyMNIST data-efficiency (3 seed mean & std. err.). . . . . . . . . . . . 112

A.1 DUN computational model with adaptation layers. . . . . . . . . . . . . 151
A.2 Test NLLs of DUNs using a stochastic relaxation of BALD . . . . . . . . 161

C.1 Estimated φ compared to the ImageNet NLL values for our ViT models. 178
C.2 Comparison for the impact on ImageNet NLL of variations in K, E and M .185
C.3 Extended few-shot results from Figure 5.4 with an additional aggregation

method and numbers of shots. . . . . . . . . . . . . . . . . . . . . . . . . 188
C.4 Extended OOD detection the results from Figure 5.6 with an additional

OOD dataset and more metrics. . . . . . . . . . . . . . . . . . . . . . . . 193



List of figures xix

C.5 Extended OOD detection results from Figure 5.6 with CIFAR100 as the
in-distribution dataset, an additional OOD dataset, and more metrics. . . 194

C.6 Extended results from Figures 5.4, 5.5 and 5.7 with additional metrics. . 195
C.7 Results for CIFAR10 and CIFAR10-C. . . . . . . . . . . . . . . . . . . . 196
C.8 Results for CIFAR100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
C.9 Results for Oxford Flowers 102. . . . . . . . . . . . . . . . . . . . . . . . 197
C.10 Results for Oxford IIIT Pet. . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.11 Results for V-MoE with K ∈ {1, 2, 4, 8} and e3 with K ∈ {1, 2, 4}. Models

with larger values of K have larger FLOPs. . . . . . . . . . . . . . . . . . 198
C.12 Results for e3 with M = 4 and K ∈ {1, 2}. . . . . . . . . . . . . . . . . . 199
C.13 End-to-end overview of the Partitioning only method. . . . . . . . . . . . 206
C.14 End-to-end overview of the Tiling method. . . . . . . . . . . . . . . . . . 207
C.15 End-to-end overview of the simple Multi-pred MoE method. . . . . . . . 207

D.1 Failure of an invariant VAE encoder. . . . . . . . . . . . . . . . . . . . . 211
D.2 Latent factor distributions for our modified dSprites data loader. . . . . . 218
D.3 Learnt augmentation distributions for rotated MNIST digits. . . . . . . . 223
D.4 Prototypes and learned distributions for PatchCamelyon. . . . . . . . . 225
D.5 VAE data-efficiency for PatchCamelyon. . . . . . . . . . . . . . . . . . . 226
D.6 Handwritten digits in the same affine orbit, their prototypes, and resamples

versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.7 Handwritten digits in the same colour orbit, their prototypes, and resam-

ples versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
D.8 Test examples, their prototypes, and corresponding colour transformation

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
D.9 dSprites digits and their position distributions contrasted with resampled

versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230





List of tables

3.1 Results obtained on the flights dataset. . . . . . . . . . . . . . . . . . . . 37

4.1 AUC-ROC scores for out-of-distribution detection. . . . . . . . . . . . . . 72

5.1 Overview of key properties of sparse MoEs, ensembles, and e3. . . . . . . 83
5.2 e3 vs. only tiling and only partitioning ablations. . . . . . . . . . . . . . 87
5.3 e3 performance with varying expert subset overlap . . . . . . . . . . . . . 88
5.4 e3 vs. a simple multi-prediction baseline. . . . . . . . . . . . . . . . . . . 89
5.5 e3 vs. other efficient ensemble approaches. . . . . . . . . . . . . . . . . . 90

A.1 BOHB settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2 Per-dataset HPO configurations. . . . . . . . . . . . . . . . . . . . . . . . 155
A.3 Hyperparameters optimised for each method. . . . . . . . . . . . . . . . . 156
A.4 BOHB hyperparameter optimisation configurations. . . . . . . . . . . . . 156
A.5 Per-dataset training configuration for image experiments. . . . . . . . . . 157
A.6 Summary of datasets and active learning specifications. . . . . . . . . . . 159

B.1 Per-dataset training configuration for image experiments. . . . . . . . . . 166
B.2 Datasets from tabular regression used in Section 4.6.2 . . . . . . . . . . . 167
B.3 Summary of image datasets. The test and train set sizes are shown in

brackets, e.g., (test & train). . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.1 Specifications of ViT-S, ViT-B, ViT-L and ViT-H. . . . . . . . . . . . . . 169
C.2 Hyperparameter values for fine-tuning on different datasets. . . . . . . . 171
C.3 Percentage improvements in NLL for E3 with and V-MoE with vs. ViT . 178
C.4 Summary of the differences between BE and E3. . . . . . . . . . . . . . . 179
C.5 ImageNet performance of different efficient ensemble approaches. . . . . . 181
C.6 Comparison of upstream deep ensembles of V-MoEs models with fewer

experts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.7 Comparison of the individual and combined performance. . . . . . . . . . 187



xxii List of tables

C.8 ImageNet performance of e3 models fine-tuned from V-MoE-B/32 check-
points with K = 2 or K = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.9 Extension of Table 5.3, showing the impact of parameter sharing in e3,
for K = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.10 e3 vs V-MoE in NLL under distribution shift. . . . . . . . . . . . . . . . 200
C.11 ImageNet performance of V-MoE and e3 without pre-training. . . . . . . 201
C.12 Comparison of upstream and downstream ensembles of V-MoE. . . . . . 203
C.13 Downstream training GFLOPs for the various e3, V-MoE, and ViT base-

lines used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.14 Percentage difference in downstream training FLOPs for e3 compared

with V-MoE and an ensemble. . . . . . . . . . . . . . . . . . . . . . . . . 205
C.15 Downstream training GFLOPs comparison for the ablation study models

in Section 5.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



List of terms

e3 Efficient Ensemble of Experts 3, 78, 85–90, 92, 93, 173–182, 184, 186–192, 200, 201,
204

AUC Area Under Curve 72

BALD Bayesian Active Learning by Disagreement 48, 160, 161

BE Batch Ensemble 8, 9, 13, 81, 82, 85, 86, 89, 95, 174, 179–182, 186, 187

BMA Bayesian Model Averaging 27, 50, 154

BNN Bayesian Neural Network 7, 9–14, 21, 49, 50, 54, 55, 58, 95, 119, 121

BO Bayesian Optimisation 153, 154

BOHB Bayesian Optimisation and Hyperband 153, 154, 156

CNN Convolutional Neural Network 13, 28, 104, 106, 113, 118, 151, 221

DDN Deterministic Depth Network 44–47

DUN Depth Uncertainty Network 3, 25–27, 31, 33–35, 37, 40, 41, 43, 44, 46, 48–51, 75,
118, 119, 151–154, 156, 158, 160, 161

EBM Energy-based Model 17, 18, 23

ECE Expected Calibration Error 16, 17, 35, 36, 68, 70, 86, 88, 89, 92, 93, 180, 185, 186,
189, 190

ELBO Evidence Lower BOund 11, 22, 30–32, 44, 101, 153, 154, 209–211

FLOPs Floating Point Operations Per Second 77, 78, 82, 84, 86, 177, 180, 181, 204



xxiv List of terms

GAN Generative Adversarial Network 18, 19, 23, 113, 223, 224

GGN Generalized Gauss-Newton 58, 60, 62–64, 66, 164, 165

GLM Generalized Linear Model 58

GP Gaussian Process 12, 33–35, 163

HMC Hamiltonian Monte Carlo 11–13, 49, 73, 119

HPO Hyperparameter Optimisation 153, 155, 156

HSV Hue Saturation Value 222, 225

IWAE Importance Weighted Autoencoder 22

IWLB Importance Weighted Lower Bound 111, 112

KL Kullback-Leibler 81, 87, 89, 181

KLD Kullback-Leibler Divergence 11, 22, 41, 43, 50, 61, 86

LDN Learnt Depth Network 44–47

LL Log Likelihood 35, 37, 40, 42, 43, 58, 65, 66, 68–70

LLM Large Language Model 121

MAP Maximum A Posteriori 10, 12, 53, 57, 59, 60, 64, 66, 67, 69, 163–165

MC Monte Carlo 9, 11–15, 30, 31, 49, 50, 67, 89, 95, 153, 154, 156, 157, 166, 180–182

MCDO Monte Carlo Dropout 48, 49, 160

MCMC Markov Chain Monte Carlo 10–12, 17

MFVI Mean-Field Variational Inference 31, 33, 37, 48, 49, 63, 69, 153, 154, 156, 157,
160

MIMO Multi-input Multi-output 8, 9, 90, 118, 174, 180–184, 186, 187

MLE Maximum Likelihood Estimation 13, 104, 210–212

MLL Marginal Log Likelihood 25, 28–33, 97, 115, 153, 209



List of terms xxv

MLP Multi-Layer Perceptron 35, 80, 171, 174, 200, 206, 207, 214, 215, 220, 221

MoE Mixture of Expert 77–86, 88, 94, 95, 120, 174, 175, 177, 179, 180, 184, 185, 200,
206, 207

MSA Multi-headed Self-Attention 80

NAS Neural Architecture Search 14, 25, 43

NF Normalising Flow 7, 19–21, 23, 102, 105, 120, 215

NLL Negative Log Likelihood 10, 16, 48, 49, 84, 86, 88, 89, 92, 93, 95, 154, 160, 161,
177, 178, 180, 185, 186, 189–191, 200, 201

NLP Natural Language Processing 80, 120

NN Neural Network 7–19, 23, 25–31, 35, 50, 51, 53–59, 61, 64–67, 69, 73–75, 77–79, 95,
101, 104, 111, 113, 114, 117–121, 152, 163, 164, 213, 214

NSF Neural Spline Flow 21, 215

OOD Out-of-distribution 18, 27, 31, 35, 36, 41, 42, 71, 72, 83, 92, 93, 95, 158, 189, 190

RCE Regression Calibration Error 35, 36

ReLU Rectified Linear Unit 64, 67, 152, 159, 160, 163, 164, 224

ResNet Residual Network 14, 31, 40, 41, 50, 64, 67, 69–71, 95, 121, 151, 157, 165, 166,
183

RMSE Root Mean Squared Error 35, 37

ROC Receiver Operating Characteristic 71, 72

SGD Stochastic Gradient Descent 11, 13, 31, 37, 41, 42, 50, 74, 152, 154, 157, 163–165,
170

SGHMC Stochastic Gradient HMC 11, 12

SGLD Stochastic Gradient Langevin Dynamics 11

SGM Symmetry-aware Generative Model 97, 99, 100, 103, 105–108, 111, 112, 115, 120,
121, 211, 223–226, 230



xxvi List of terms

SSL Self-Supervised Learning 102, 104, 105, 209, 210, 212, 213, 216, 217

SWAG Stochastic Weight Averaging Gaussian 63, 67, 69, 72, 165, 166

TCE Tail Calibration Error 35–37

V-MoE Vision-MoE 80–84, 86, 87, 89, 90, 92–95, 118, 170, 173–183, 185–187, 189–191,
200, 201, 203, 204

VAE Variational Autoencoder 7, 19–23, 97, 102, 111, 112, 114, 120, 121, 209–211, 215,
216, 221, 225

VI Variational Inference 10, 12–14, 19, 21, 22, 25, 29–33, 50, 95, 119, 154

ViT Vision Transformer 80, 82–84, 90, 92–95, 169, 172–175, 177, 178, 180, 181, 183,
184, 186–190, 200, 201, 204, 206, 207

VOGN Variational Online Gauss-Newton 67, 69, 165, 166



List of symbols

Variables

a, x, θ, ϕ, etc. scalars

a, x, θ, ϕ random scalars

a, x, θ, ϕ vectors

a, x, θ, ϕ random vectors

A, X matrices

A, X random matrices

Probability

p (a) a PDF or PMF for the random variable a

q (a) another PDF or PMF for the random variable a

p (a = a), p (a) a density or mass for the event a = a

p (y, x) a joint probability for y and x

p (y | x) a conditional probability for y given x

pϕ(·) a probability with parameters ϕ

N (x |µ, σ2) a Normal distribution with mean µ and variance σ2

Ep(x) [f(x)] the expected value
∫
f(x)p (x)dx

H [p (x)] the entropy of p (x)

DKL [q (x) || p (x)] the KL divergence Eq(x)

[
log q(x)

p(x)

]
between q (x) and p (x)

Miscellaneous

D a dataset

f1 ◦ f2 the composition of the functions f1 and f2

1[cond] the indicator function; returns 1 if cond is True otherwise 0





Chapter 1

Introduction

Deep learning (LeCun et al., 2015) is an extremely successful machine learning paradigm
that has been driving renewed excitement around machine learning and artificial in-
telligence since AlexNet (Krizhevsky et al., 2012) won the ImageNet LSVRC competi-
tion (Deng et al., 2009; Russakovsky et al., 2015). Deep learning is not only responsible
for excitement around ML but also a large number of commercial and research successes:

• Superhuman performance in image classification (He et al., 2016a),

• World-wide deployment of human-level machine translation (Wu et al., 2016),

• Superhuman performance in playing challenging games such as Go (Silver et al.,
2016), StarCraft II (Vinyals et al., 2019), and Dota 2 (Berner et al., 2019),

• Dermatologist-level classification of skin cancer (Esteva et al., 2017), and

• State-of-the-art protein folding predictions (Senior et al., 2020).

Most recently, deep learning has been responsible for a new wave of excitement surrounding
artificial intelligence with the development of strikingly human-like chatbots such as
ChatGPT—built upon GPT3/4 (Brown et al., 2020; OpenAI, 2023)—and Gemini (Gemini
Team, 2023), as well as text-to-image (and video) systems like DALLE-2 (Ramesh et al.,
2022) and Imagen (Saharia et al., 2022).

However, despite the successes of deep learning, it is not without its flaws. One such
flaw is that deep learning models are bad at knowing when they don’t know. That is,
they are unable to robustly and reliably quantify the uncertainty in their predictions.
To further illustrate this problem, consider self-driving cars. This is a safety-critical
application for which deep learning is already being used in production (e.g., Tesla



2 Introduction

Autopilot (Tesla, 2024)). Self-driving car technology must be able to handle never-before-
encountered traffic situations since it is impossible to collect training data involving
all possible combinations of vehicles, pedestrians, weather conditions, traffic signs, and
other objects/events. When these situations are encountered—and the software cannot
possibly act in a safe and reliable manner—it makes sense for the behaviour of the vehicle
to be modified (e.g., slowing down to a stop on the side of the road). However, such
fallbacks can only be enabled if the software is aware that it is currently acting outside
of its normal operating conditions. Without the ability to know what it doesn’t know,
this situation cannot be detected. Other applications that require reliable uncertainty
estimates include exploration in reinforcement learning (Osband et al., 2016), active
learning (Settles, 2009), optimally combining the predictions of different models, and bet
sizing using the Kelly criterion (Kelly, 1956).

Another flaw is that most deep learning models tend to be discriminative rather than
generative and typically do not include strong inductive biases about the underlying
causal generative process for the data. As a result, deep learning models tend to be data
hungry and can struggle with generalisation to out-of-distribution domains. Furthermore,
the ability of a model to generate data is useful in its own right and can help us debug
pathologies of our model (Ghahramani, 2015). Consider a situation in which the training
data is not representative of the population to which the model is being applied. This
problem can be diagnosed by generating samples from the model and observing the
disparity between the model’s view of the world and reality.

Probabilistic machine learning (Ghahramani, 2015), in contrast to deep learning, does
not suffer from these flaws. Uncertainty plays a fundamental part in the probabilistic
framework, and there is an intimate link between discriminative and generative models via
Bayes’ rule—a discriminative model p (y |x), which predicts a label y given an example
x, can be inverted to give a generative model p (x | y) which can create new examples
given a label, and vice versa. Probabilistic methods also offer other advantages such
as principled model comparison (MacKay, 2003), and natural handling of missing data
via latent variable inference—e.g., with the EM algorithm (Ghahramani and Jordan,
1993)—to name a few.

Ideally, we want models which leverage both the raw predictive power of deep learning
and the complementary advantages of the probabilistic framework. However, combining
the probabilistic approach with deep learning provides many challenges. This thesis
aims to address some of these challenges by developing new methods for combining deep
learning and probabilistic modelling to improve (1) the uncertainty estimates and (2)
the generative modelling capabilities of deep neural networks.



1.1 Thesis Outline and Contributions 3

1.1 Thesis Outline and Contributions

This thesis is structured as follows.
Chapter 2 provides an overview of the probabilistic framework and Bayesian inference

applied to deep learning. It covers ensembles (Section 2.1.1), Bayesian neural networks
(Section 2.1.2), computation and evaluation of uncertainty estimates (Sections 2.1.3
and 2.1.4), and deep generative models (Section 2.2) with a focus on variational autoen-
coders and normalising flows.

Chapter 3 explores the use of probabilistic inference for determining the depth
of a neural network, and how the uncertainty over the depth can be translated to
uncertainty over the predictions of the model. This chapter is primarily based on
“Depth Uncertainty in Neural Networks” (Antorán et al., 2020) with additional content
from “Depth Uncertainty Networks for Active Learning” (Murray et al., 2021b). The
main contribution is the development of a Depth Uncertainty Network (DUN) which
demonstrates that uncertainty over the depth leads to to well-calibrated predictive
uncertainty estimates. Minor contributions include the application of DUNs to neural
architecture search and active learning.

Chapter 4 focuses on probabilistic inference for neural network weights. In particular,
the chapter addresses the challenge of applying expressive Bayesian inference to deep
neural networks with many parameters. This chapter is based on “Bayesian Deep Learning
via Subnetwork Inference” (Daxberger et al., 2021b). The main contribution is the
development of subnetwork inference—a framework for scalable Bayesian inference in the
large parameter spaces of deep neural networks. When applied to Laplace approximations,
subnetwork inference provides calibrated uncertainty estimates that are competitive with
state-of-the-art methods.

Chapter 5 investigates uncertainty estimation for modern neural networks—such
as Transformers (Vaswani et al., 2017) and Sparse MoEs (Shazeer et al., 2017)—for
which the posterior inference-based approaches are not applicable due to the extremely
large number of parameters. Instead, taking inspiration from Bayesian model averaging,
different explanations of the data are averaged to obtain robust predictions with calibrated
uncertainty estimates. This chapter is based on “Sparse MoEs meet Efficient Ensembles”
(Allingham et al., 2022b). There are two main contributions: (1) a demonstration that
Sparse MoEs and ensemble methods (which share several similarities) can be combined
to obtain improved predictive performance and better uncertainty estimates, and (2) an
Efficient Ensemble of Experts (e3) model which improves the uncertainty estimates of
Sparse MoEs without sacrificing computational efficiency.



4 Introduction

Chapter 6 tackles the problem of data efficiency in deep generative models. Concretely,
the chapter focuses on learning symmetries in the data in an unsupervised manner and
incorporating these symmetries into “black-box” generative models without strong induc-
tive biases to improve their data efficiency. This chapter is based on “A Generative Model
of Symmetry Transformations” (Allingham et al., 2024). The main contributions are the
development of an algorithm for learning symmetries in the data and a demonstration
that incorporating these symmetries into generative models improves their data efficiency.

Finally, Chapter 7 concludes the thesis and discusses future directions for research.

List of Papers

This thesis is based on several papers which have been written throughout my PhD
with many fantastic collaborators. For the sake of completeness, a list of these papers is
included below. I have also included several papers that I have contributed to but are
not included in this thesis. The papers included in the thesis are indicated with an bold
titles. Equal contributions are indicated with an asterisk (∗).

Peer-reviewed Conference and Journal Papers

James Urquhart Allingham∗, Javier Antorán∗, and José Miguel Hernández-Lobato.
“Depth Uncertainty in Neural Networks.” In Advances in Neural Information
Processing Systems 33, NeurIPS, 2020.

Erik Daxberger, James Urquhart Allingham∗, Eric Nalisnick∗, Javier Antorán∗, and
José Miguel Hernández-Lobato. “Bayesian Deep Learning via Subnetwork
Inference.” In Proceedings of the 38th International Conference on Machine
Learning, ICML, 2021.

Chelsea Murray, James Urquhart Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. “Addressing Bias in Active Learning with Depth Uncertainty
Networks... or Not.” In Proceedings of I (Still) Can’t Believe It’s Not Better!
Workshop at NeurIPS, 2021.

James Urquhart Allingham, Florian Wenzel, Zelda E. Mariet, Basil Mustafa,
Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Laksh-
minarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, and Rodolphe
Jenatton. “Sparse MoEs meet Efficient Ensembles.” Transactions on Machine
Learning Research, 2022.



1.1 Thesis Outline and Contributions 5

Vincent Fortuin, Mark Collier, Florian Wenzel, James Urquhart Allingham, Jeremiah
Liu, Dustin Tran, Balaji Lakshminarayanan, Jesse Berent, Rodolphe Jenatton, and
Effrosyni Kokiopoulou. “Deep Classifiers with Label Noise Modelling and Distance
Awareness.” Transactions on Machine Learning Research, 2022.

Javier Antorán, James Urquhart Allingham∗, David Janz∗, Erik Daxberger, Riccardo
Barbano, Eric Nalisnick, and José Miguel Hernández-Lobato. “Adapting the
Linearised Laplace Model Evidence for Modern Deep Learning.” In Proceedings of
the 39th International Conference on Machine Learning, ICML, 2022.

James Urquhart Allingham∗, Jie Ren∗, Michael W. Dusenberry, Xiuye Gu, Yin Cui,
Dustin Tran, Jeremiah Zhe Liu, and Balaji Lakshminarayanan. “A Simple Zero-
shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image
Models.” In Proceedings of the 40th International Conference on Machine Learning,
ICML, 2023.

Metod Jazbec, James Urquhart Allingham, Dan Zhang, and Eric Nalisnick. “To-
wards Anytime Classification in Early-Exit Architectures by Enforcing Conditional
Monotonicity.” In Advances in Neural Information Processing Systems 37, NeurIPS,
2023.

James Urquhart Allingham, Bruno Mlodozeniec, Shreyas Padhy, Javier Antorán,
David Krueger, Richard Turner, Eric Nalisnick, and José Miguel Hernández-Lobato.
“A Generative Model of Symmetry Transformations.” In Proceedings of the
41st International Conference on Machine Learning, ICML, 2024.

Peer-reviewed Workshop and Symposium Papers

James Urquhart Allingham∗, Javier Antorán∗, and José Miguel Hernández-Lobato.
“Variational Depth Search in ResNets.” 1st ICLR Workshop on Neural Architecture
Search, 2020.

Chelsea Murray, James Urquhart Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. “Depth Uncertainty Networks for Active Learning.”
NeurIPS Workshop on Bayesian Deep Learning, 2021.

Javier Antorán, James Urquhart Allingham, David Janz, Erik Daxberger, Eric
Nalisnick, and José Miguel Hernández-Lobato. “Linearised Laplace Inference in
Networks with Normalisation Layers and the Neural g-Prior.” In Fourth Symposium
on Advances in Approximate Bayesian Inference, AABI, 2022.



6 Introduction

James Urquhart Allingham and Eric Nalisnick. “A Product of Experts Approach to
Early-Exit Ensembles.” 1st ICML Workshop on Dynamic Neural Networks, 2022.

James Urquhart Allingham, Javier Antoran, Shreyas Padhy, Eric Nalisnick, and José
Miguel Hernández-Lobato. “Learning Generative Models with Invariance to Symme-
tries.” NeurIPS Workshop on Symmetry and Geometry in Neural Representations,
2022.



Chapter 2

Background

This chapter covers two applications of probabilistic inference in deep learning: uncer-
tainty estimation (Section 2.1) and deep generative modelling (Section 2.2). Section 2.1
first covers two popular approaches to uncertainty estimation in deep learning: ensembles
(Section 2.1.1) and Bayesian Neural Networks (BNNs) (Section 2.1.2). Then, Section 2.1.3
covers how to compute uncertainties for NNs and Section 2.1.4 covers how to evaluate
the quality of those uncertainty estimates1. Section 2.1 will be important for Chap-
ters 3, 4 and 5, which all centre around methods for uncertainty estimation in deep
learning. Section 2.2 introduces deep generative modelling and discusses several popular
approaches with a particular focus on Variational Autoencoders (VAEs) (Section 2.2.2)
and Normalising Flows (NFs) (Section 2.2.1) Section 2.2 will be required for Chapter 6,
which focuses on improving the data-efficiency of deep generative models and builds on
NFs and VAEs.

2.1 Uncertainty Estimation in Deep Learning

Uncertainty estimation for NNs is a well-studied problem. The two most common
approaches are ensemble methods and BNNs. Ensembles train multiple independent NNs
and aggregate their predictions to obtain uncertainty estimates. BNNs use Bayesian
inference to obtain a posterior distribution over the parameters of a NN, which is then used
to obtain predictive uncertainty estimates. In this section, we review both approaches.

1These two subsections closely follow Appendix C of Antorán et al. (2020).



8 Background

2.1.1 Ensembles

Ensembles have long been used to improve the predictive performance of machine learning
models (Hansen and Salamon, 1990; Geman et al., 1992; Krogh and Vedelsby, 1995;
Opitz and Maclin, 1999; Dietterich, 2000). Lakshminarayanan et al. (2017) propose
deep ensembles—a simple but effective method for obtaining uncertainty estimates from
NNs—that trains multiple independent networks and aggregates their predictions. The
uncertainty in the predictions of the ensemble is then quantified using the disagreement
between the predictions of the ensemble members. While this method provides very
strong results, both in terms of accuracy and uncertainty quantification, it is limited by
its computational cost. Nonetheless, deep ensembles remain a very strong baseline for
uncertainty estimation in NNs.

Several works (Huang et al., 2017; Garipov et al., 2018; Maddox et al., 2019) reduce
the cost of training an ensemble at the price of reduced predictive performance (Ashukha
et al., 2020). Two of the most popular of these efficient ensemble methods are Batch
Ensembles (BEs) (Wen et al., 2020) and Multi-input Multi-output (MIMO) ensembles
(Havasi et al., 2020).

Batch Ensembles. BEs, proposed by Wen et al. (2020), train an ensemble of NNs
in which some “slow” parameters are shared across the ensemble members, while the
“fast” parameters are unique to each ensemble member. Concretely, the two per-ensemble
vectors rm ∈ RD and sm ∈ RL are combined with a shared weight matrix U ∈ RD×L, to
create the mth member’s weight matrix

Um = U · (rms⊺m), (2.1)

where · is elementwise multiplication. A BE can be trained in a single forward and
backward pass by tiling the input batch and vectorising (2.1). Thus, the computational
cost of a BE is approximately the same as a standard NN, assuming that there is enough
memory to hold the tiled batch. (Wen et al., 2020) show that the success of BEs relative
to other efficient ensemble methods is due to their more diverse predictions.

MIMO Ensembles. MIMO ensembles, proposed by Havasi et al. (2020), train a single
NNs to make multiple predictions. A standard NN is augmented such that there are
M input and output layers, where M is the ensemble size. Each input layer is fed a
different input, and each output layer is trained to predict the corresponding target.
At test time, each input layer is fed the same input, and the predictions of the output



2.1 Uncertainty Estimation in Deep Learning 9

layers are aggregated to obtain a single prediction. Despite only having a small number
of member-specific parameters (the input and output layers), MIMO ensembles are
competitive with BEs and standard ensembles in several settings. On the other hand,
for large values of M , MIMO ensemble performance can degrade if the base NN is not
sufficiently over-parameterised with respect to the size of the dataset. As with any
ensemble method, sufficient over-parameterisation is required to learn multiple diverse
explanations of the data. However, MIMO ensembles are particularly sensitive to this
issue because, except for the input and output layers, the number of parameters does
not scale with M . While BEs are also somewhat sensitive to this issue, they are more
resilient because fast parameters can be added to each layer of the NN.

2.1.2 Bayesian Neural Networks

A natural solution to the problem of overconfidence in deep networks is the Bayesian
approach, which uses Bayes’ rule to calculate the posterior distribution over the parameters
of a NN given the likelihood—the probability of observing the data given the parameters—
and some prior belief about the parameters:

p (θ | D,M) =
p (D |θ,M)p (θ,M)∫
p (D |θ,M)p (θ,M)dθ

, (2.2)

where θ are the parameters of the NN, D is the observed data, andM represents our
modelling assumptions such as the number of layers and the choice of activation function
in the NN. The other term in (2.2), also written as p (D |M), is the evidence a.k.a.
the marginal likelihood. It can be interpreted as the probability of the data given our
modelling choices. For the sake of conciseness, in the rest of this thesis, we will drop the
explicit dependence onM. Once the posterior has been calculated, predictions for a new
test point x∗ can be made by marginalising the parameters:

p (y∗ |x∗, D) =
∫

p (y∗ |x∗, θ)p (θ | D)dθ. (2.3)

Unfortunately, the integrals in Equations (2.2) and (2.3) are intractable to compute for
NNs. As a result, BNNs require approximations in practice. For (2.3), the solution is to
approximate the integral using Monte Carlo (MC) sampling:

p (y∗ |x∗, D) ≈ 1

N

N∑
n=1

p (y∗ |x∗, θn), θn ∼ p (θ | D). (2.4)



10 Background

In the case of the evidence in (2.2), approximations generally come in two forms.

1. Simplifying assumptions about the form of the posterior distribution, which allow
us to either avoid or simplify the calculation of the evidence.

2. Using Markov Chain Monte Carlo (MCMC) methods to sample from the posterior,
without directly calculating the evidence.

Some of the earliest work on BNNs—falling into the first category—was done by
MacKay (1992), who proposed a Laplace approximation of the posterior. The Laplace
approximation assumes the posterior is a unimodal Gaussian

p (θ | D) = N (θ |θ∗, Σ), (2.5)

where θ∗ are the MAP parameters found using standard gradient descent on the regu-
larised Negative Log Likelihood (NLL) loss, and Σ is the inverse Hessian of the negative
log posterior, which is equivalent to the Hessian of the loss evaluated at θ∗:

Σ−1 = ∇2
θ (− log p (D |θ)− log p (θ))

∣∣∣
θ=θ∗

. (2.6)

However, computing the Hessian for a modern NN—with on the order of 106 parameters—
would require on the order of 1012 bytes of memory and a non-trivial amount of compute.
To overcome this limitation, MacKay (1992) assumes that the Hessian is diagonal, i.e.,
that all parameters are independent from one another. Ritter et al. (2018) relax the
independence assumption using the Kronecker-factorised covariance matrix approximation
of Martens and Grosse (2015). With this block-diagonal factorisation, it is only assumed
that parameters in different layers are independent.

Other approximations include expectation propagation (Hernández-Lobato and Adams,
2015) and Variational Inference (VI) (Hinton and van Camp, 1993; Graves, 2011; Blundell
et al., 2015). The VI approach was pioneered by Hinton and van Camp (1993), who require
manual derivation of analytical expressions for the posterior, which limits applicability to
all but the simplest NNs. Graves (2011) built on this work, allowing VI to automatically
be applied to almost any neural network at the cost of biased gradients and the restriction
that the posterior for each weight be Gaussian. Blundell et al. (2015) further built on
this work by incorporating ideas from stochastic variational inference (Hoffman et al.,
2013; Ranganath et al., 2014) to provide unbiased estimates of the gradients and lift
the Gaussian restriction. At a high level, VI methods avoid the intractable integral in
(2.2) by approximating p (θ | D) with qϕ(θ), a family of distributions parameterised by



2.1 Uncertainty Estimation in Deep Learning 11

ϕ. The value of ϕ, and therefore the specific form of q (·), is chosen by minimising the
Kullback-Leibler Divergence (KLD) between p (θ | D) and qϕ(θ), using gradient descent:

ϕ = argmin
ϕ

DKL [qϕ(θ) || p (θ | D)] (2.7)

= argmax
ϕ

Eqϕ(θ) [log p (D |θ)]− DKL [qϕ(θ) || p (θ)] (2.8)

= argmax
ϕ

L(ϕ). (2.9)

L(ϕ) is called the Evidence Lower BOund (ELBO). The two terms in the ELBO neatly
trade off keeping the model simple (the KL term) and explaining the data (the likelihood
term). Blundell et al. (2015) use MC sampling and the reparameterisation trick (Kingma
and Welling, 2014) to calculate an unbiased estimate of the ELBO for any NN, which
allows the variational parameters ϕ to be learnt via backpropagation:

L(ϕ) ≈ 1

N

N∑
n=1

[log p (D |θn)− log qϕ(θn) + log p (θn)] , θn ∼ qϕ(θ). (2.10)

For many choices of prior and variational family, the KL term in the ELBO can be
calculated analytically. However, (2.10) is more general, and Blundell et al. (2015) did
not find that using an analytical KLD improved or worsened performance. Finally, note
that Hinton and van Camp (1993), Graves (2011), and Blundell et al. (2015) make a
mean-field assumption, i.e., all parameters are independent from one another.

Some of the first work in the second category was done by (Neal, 1995) who uses
Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2011; Betancourt, 2017)
to sample from the posterior. HMC solves a key problem with a naive application of
MCMC methods to BNNs: random walk behaviour (Neal, 1995). Without the reduction
in random walk behaviour provided by HMC, MCMC methods would be too slow to be
of any practical use in BNNs. A major limitation of HMC is the need to compute the
gradient of the potential energy function on the full dataset (Chen et al., 2014). One
solution to this problem is Stochastic Gradient Langevin Dynamics (SGLD) (Welling
and Teh, 2011), which is a mini-batch friendly learning algorithm which can be seen as
Stochastic Gradient Descent (SGD) with added noise. In another light, SGLD can be
seen as a variant of HMC with only one leapfrog iteration and without the important
momentum term (whose absence results in increased random-walk behaviour). Another
solution, more in line with HMC, is Stochastic Gradient HMC (SGHMC) (Chen et al.,
2014), which counteracts the negative effects of using a noisy mini-batch estimate of



12 Background

the potential energy’s gradient, thereby allowing MCMC approaches to scale to large
datasets. However, Betancourt (2015) shows that SGHMC is biased. Nonetheless, given
very large compute resources, full-batch HMC outperforms MAP-estimated NNs, VI,
deep ensembles, and other MCMC methods (Izmailov et al., 2021b). Although it is
not clear how well HMC approximates the true posterior distributions of large NNs, its
strong predictive performance and asymptotic guarantees mean that HMC—coupled
with impractically large compute resources—arguably provides a useful point of reference
for understanding Bayesian inference in NNs.

An alternative solution to the problem of approximating BNNs is based on the work
of Neal (1995), who showed that, under certain conditions, a neural network with a single
infinitely wide hidden layer is equivalent to a Gaussian Process (GP). The result of Neal
(1995) has been extended to more general classes of neural networks, including deep and
convolutional networks (Lee et al., 2018; de G. Matthews et al., 2018; Garriga-Alonso
et al., 2019). Rather than performing approximate inference for a neural network, we can
perform exact inference by working with its limiting GP. Unfortunately, naive inference
in GPs is an O(N3) operation in the dataset size, and while more efficient approximations
exist (e.g., Gibbs and MacKay (1996); Snelson and Ghahramani (2005); Titsias (2009);
Hensman et al. (2013); Gardner et al. (2018)), the scalability of this approach is still
limited.

A recent approach to approximate inference in BNNs is to take advantage of Bayesian
interpretations for the stochastic nature of standard NN training methods. This idea was
introduced by Gal and Ghahramani (2016), who reinterpret binary dropout (Srivastava
et al., 2014) as VI. This idea was extended to Gaussian dropout by Kingma et al. (2015).
Teye et al. (2018) and Atanov et al. (2019a) applied the same idea to batch normalization
(Ioffe and Szegedy, 2015), noting that many popular NN architectures no longer make use
of dropout. Similarly, Khan et al. (2018) inject noise into the Adam optimiser (Kingma
and Ba, 2015). These methods are particularly attractive because they require little to
no changes in code and training procedure, and they are scalable to large datasets (e.g.,
Osawa et al. (2019) scale the method of Khan et al. (2018) to ImageNet). However, they
are not without shortcomings. For example, Osband (2016) notes that the MC Dropout
(Gal and Ghahramani, 2016) posterior predictive does not concentrate as more data are
observed.

One of the challenges for BNNs is the high dimensionality of the parameter space. With
tens of millions of parameters not being uncommon for modern NNs, many approaches for
probabilistic inference perform poorly. A solution to this is subspace inference (Izmailov
et al., 2019), which is motivated by the fact that the intrinsic dimensionality of a



2.1 Uncertainty Estimation in Deep Learning 13

modern NN can be orders of magnitude lower than the number of parameters (Li et al.,
2018). Subspace inference is compatible with a variety of Bayesian inference methods
such as HMC, VI, and the Laplace approximation. Additionally, because of the low
dimensionality of the subspace, flexible variational families such as RealNVP (Dinh et al.,
2017) can be used. Izmailov et al. (2019) demonstrate that subspace inference performs
favourably compared to baselines such as MC Dropout and Kronecker-factorised Laplace
approximations on small-scale tabular regression and image classification benchmarks. A
recent approach related to subspace inference is BNNs with rank-1 factors (Dusenberry
et al., 2020a), which builds on the BE method (Wen et al., 2020). This approach uses VI
to learn the posterior distributions for the two rank-1 vectors rm and sm in (2.1), while
learning U via MLE. This approach is competitive with both deterministic NN training
and Deep Ensembles on ImageNet.

Another potential issue with the BNN approach is that it is not clear how to place
reasonable priors over the weights of the network, particularly in high-dimensional weight
spaces. Indeed, many of the BNN methods listed above assume independent Gaussian
priors for each of the weights. Wenzel et al. (2020a) show that without up weighing
the likelihood the performance of BNNs with mean-field Gaussian priors—even with
accurate posterior inference via HMC—can be worse than standard SGD trained NNs.
Fortuin et al. (2022b) support these findings by demonstrating that this cold posterior
effect can be mitigated by using heavier-tailed prior distributions. They also show that
spatial correlations in CNNs weight priors, especially in later layers, improve performance.
Their findings highlight the importance of choosing good priors rather than defaulting to
independent Gaussian distributions. On the other hand, Izmailov et al. (2021b) suggest
that the cold-posterior effect is largely an artefact of data-augmentation. They also found
that performance was largely robust to the choice of prior. In a follow-up paper, Izmailov
et al. (2021a) demonstrate that performance under distribution shift is highly sensitive
to the choice of prior. Finally, Foong et al. (2020) show that the mean-field prior used by
VI and MC Dropout does not allow in-between uncertainty to be captured by 1-hidden
layer NNs and that deeper networks struggle to capture it, despite theoretically being
able to do so.

Recent work (Hafner et al., 2019; Sun et al., 2019; Ma et al., 2019) proposes functional
inference as a solution to the challenge of choosing priors in weight-space. However,
functional inference methods are hampered by various limitations (Nalisnick and Smyth,
2018; Pearce et al., 2019; Nalisnick et al., 2021; Burt et al., 2021), such as approximation
of divergences for stochastic processes, and have yet to see widespread adoption. On the
other hand, Wilson (2020) and Wilson and Izmailov (2020) argue that the strength of



14 Background

the Bayesian inference for NNs does not lie in the choice of prior over weight—since the
choice of NN architecture is essentially a choice of function space prior—but rather in
the marginalisation over multiple explanations of the data that takes place when making
predictions. In this light, even deep ensembles can be viewed as “Bayesian” in a loose
sense. In fact, the strong performance of deep ensembles seems to stem from the fact that
their predictions marginalise multi-modal explanations of the data (Fort et al., 2019).

Instead of performing inference over the weights of a NN, as in BNNs, one can
perform inference over the structure of NNs. An early work in this direction is automatic
relevance detection prior (MacKay, 1994), which can perform inference over NN width.
Since then, several similar approaches have been introduced, such as Lawrence (2001b);
Ghosh et al. (2019). Nalisnick et al. (2019a) performs inference over NN depth with an
automatic depth determination prior. Perhaps unsurprisingly, probabilistic inference over
NN structure has been applied in the context of Neural Architecture Search (NAS). For
example, Dikov and Bayer (2019) learn the depth and width of a ResNet using VI.

2.1.3 Computing Uncertainties

In this section, we discuss how to compute uncertainties for NNs. Let us consider NNs,
which parametrises two kinds of distributions: the categorical and the Gaussian, for
classification and regression problems, respectively. Now, let us consider a random
variable ξ, with distribution q (ξ), that induces stochasticity in our NNs. For example,
in the case of BNNs, we would have a distribution over weights of the network. But, as
we will see in Chapter 3, this could also be a distribution over the depth of the network.

For classification models, our networks output a vector—either of logits or probabilities—
with elements fk(x,ξ), corresponding to classes {ck}Kk=1. The likelihood function is
p (y |x, ξ) = Cat (y | f(x,ξ)). Through marginalisation, the uncertainty in ξ is trans-
lated into uncertainty in predictions. In some cases, this marginalisation can be computed
exactly; however, in most cases, we resort to approximating it with MC sampling:

p (y∗ |x∗, D) = Eq(ξ) [p (y∗ |x∗, ξ)] (2.11)

≈ 1

M

M∑
m=0

Cat(y | f(x∗, ξm)); ξm ∼ q (ξ). (2.12)



2.1 Uncertainty Estimation in Deep Learning 15

In both the exact and approximate cases, the resulting predictive distribution is categorical.
We quantify its uncertainty using entropy:

H [p (y∗ |x∗, D)] =
K∑
k=1

p (y∗ = ck |x∗, D) log p (y∗ = ck |x∗, D). (2.13)

In this thesis, we employ homoscedastic likelihood functions for regression. The mean is
parametrised by a NN, and the variance is learned as a stand-alone parameter:

p (y∗ |x∗, ξ) = N
(
y
∣∣ f(x∗,ξ), σ2 · I

)
. (2.14)

Thus, marginalising over ξ induces a Gaussian mixture over outputs. We approximate
this mixture with a single Gaussian using moment matching, as in (Lakshminarayanan
et al., 2017):

p (y∗ |x∗) ≈ N
(
y∗ ∣∣ µ̃, σ̃2

)
. (2.15)

The mean be computed (either via MC or exactly, depending on the nature of ξ) as:

µ̃ = Eq(ξ) [f(x
∗,ξ)] (2.16)

≈ 1

M

M∑
m=0

f(x∗, ξm); ξm ∼ q (ξ). (2.17)

The predictive variance is obtained as the variance of the mixture distribution:

σ̃2 ≈ 1

M

M∑
m=1

f(x∗, ξm)
2 − µ̃2

︸ ︷︷ ︸
(A)

+ σ2

︸︷︷︸
(B)

; ξm ∼ q (ξ). (2.18)

Here, (A) reflects model uncertainty—our lack of knowledge about ξ—while (B) tells us
about the irreducible uncertainty—i.e., noise—in our training data.

2.1.4 Evaluating Uncertainty Estimates

In the previous section, we discussed how to compute uncertainties for NNs. In this
section, we briefly discuss how to evaluate the quality of these uncertainties. We consider
the following metrics for measuring the quality of uncertainty estimates:



16 Background

• Test NLL (lower is better): Conceptually, this metric tells us how probable it is
that the (test) data was generated by our model and parameters. More precisely,
it measures how well our model’s predictive distribution matches the observed
distribution of the test data. It is a proper scoring rule (Gneiting and Raftery,
2007), i.e., the expected NLL of a NN f1 will be lower than a NN f2 if and only
if f1 provides a predictive distribution that is more similar to the observed data
distribution. NLL depends on both the accuracy of predictions and the calibration
of their uncertainty.

• Brier Score (lower is better): This is another proper scoring rule that measures
the accuracy of predictive probabilities in classification tasks. It is computed as the
mean squared error between predicted class probabilities and one-hot class labels:

BS =
1

N

N∑
n=1

1

K

K∑
k=1

(p (y∗ = ck |x∗, D)− 1[y∗ = ck])
2 (2.19)

Erroneous predictions made with high confidence are penalised less by the Brier
score than by log-likelihood. This can prevent outlier inputs from having a dominant
effect on experimental results.

• Expected Calibration Error (ECE) (lower is better): This metric measures the
difference between predictive confidence and empirical accuracy in classification. It
is computed by dividing the [0,1] range into a set of bins {Bs}Ss=1 and weighing the
miscalibration in each bin by the number of points that fall into it |Bs|:

ECE =
S∑

s=1

|Bs|
N
|acc(Bs)− conf(Bs))|, (2.20)

where,

acc(Bs) =
1

|Bs|
∑
x∈Bs

1[y= argmax
ck

p (y |x, D)], and (2.21)

conf(Bs) =
1

|Bs|
∑
x∈Bs

max p (y |x, D). (2.22)

ECE is not a proper scoring rule. A perfect ECE score can be obtained by predicting
the marginal distribution of class labels p(y) for every input. A well-calibrated
predictor with poor accuracy would obtain low log-likelihood values but also low



2.2 Deep Generative Models 17

ECE. Although ECE works well for binary classification, the naive adaptation to
the multi-class setting suffers from several pathologies (Nixon et al., 2019).

Please see Ovadia et al. (2019); Ashukha et al. (2020) for additional discussion on
evaluating uncertainty estimates of predictive models, including extensive benchmarking,
potential issues with these metrics, and discussion of several additional metrics.

2.2 Deep Generative Models

Deep generative models are another approach to combining probabilistic inference with
deep learning. The difference is in what is being inferred. In Section 2.1.2, inference
was over the parameters θ or the structure of a NN. In the case of deep generative
models, inference is performed for the data x and/or a set of latent variables z. In a
deep generative model, the probability distributions for these variables are parameterised
by the outputs of a NN. There are a number of successful approaches to deep generative
modelling, which include the following:

1. Auto-regressive models—such as NADE, RNADE, and MADE (Larochelle and
Murray, 2011; Uria et al., 2013; Germain et al., 2015), PixelCNN and PixelRNN
(van den Oord et al., 2016b,c), and WaveNet (van den Oord et al., 2016a)—learn
a conditional distribution pθ(xi | {xj}j<i). These models have the advantage that
pθ(x) can be easily evaluated. However, this comes at a computational cost that
scales with the dimensionality of the data.

2. Energy-based Models (EBMs)—such as restricted and deep Boltzmann machines
(Smolensky, 1986; Salakhutdinov and Hinton, 2009)—learn distributions of the
form

p (x) =
exp (−Eθ(x))

Z(θ)
, (2.23)

where Eθ(x) is an energy function which maps each observation to a scalar “energy”,
and Z(θ) =

∫
exp (−Eθ(x))dx is the partition function or normalizing constant.

EBMs are often trained via the gradient

∇θ log p (x) = Ep(x) [∇θEθ(x)]−∇θEθ(x), (2.24)

where the expectation can be approximated using MCMC (Hinton, 2002). In
general, it is not possible to evaluate p (x) for the EBM because calculating Z(θ)



18 Background

is intractable. Despite these challenges, EBMs have seen a resurgence in recent
years, with Grathwohl et al. (2020) simultaneously achieving state-of-the-art results
for image generation and classification at the time. Grathwohl et al. (2020) also
highlight a strength of EBMs: the flexibility to choose almost any function, e.g., a
NN classifier, as the energy function. EBMs are also useful for applications in which
the normalising constant does not need to be evaluated, e.g., Out-of-distribution
(OOD)-detection (Liu et al., 2020).

3. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are generative
models that do not allow for p (x) to be evaluated but can produce high quality
samples; see (Brock et al., 2019). GANs are trained by playing a min-max game
between two networks: a discriminator D and a generator G. The discriminator
aims to classify whether examples are real or fake (sampled from the generator).
The generator aims to produce realistic samples which trick the discriminator. The
GAN training objective of Goodfellow et al. (2014) is

min
G

max
D

Epd(x) [logD(x)] + Epz(z) [log(1−D(G(z)))] , (2.25)

where pd is the true data distribution, and pz is a prior (noise) distribution.
Minimizing this loss with an optimal discriminator D(x) = pd(x)

pd(x)+pg(x)
is equivalent

to minimising the Jensen-Shannon Divergence

DJS [pd || pg] = DKL [pd || pm] + DKL [pg || pm] (2.26)

between the true data distribution pd(x) and the distribution implicitly defined
by the generator pg(x) = pg(G(z)), where pm(x) =

pd(x)+pg(x)

2
is the mean of these

two distributions. However, in practice, the discriminator is not optimal. In fact,
training the discriminator to optimality can cause the gradients to the generator to
vanish (Arjovsky et al., 2017). More recent GAN variants, such as the Wasserstein
GAN (Arjovsky et al., 2017)—which minimises the Wasserstein distance between
pg and pd rather than an approximation of the Jensen-Shannon Divergence—solve
this problem.

4. (Denoising) diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), also
known as score-based generative models (Song et al., 2021), are a class of generative
model that avoid the problem of estimating pθ(x) by instead estimating the score
function ∇x log pθ(x). This is done by training a NN to “denoise” samples drawn
from a random walk. The random walk is defined by a sequence of diffusion steps



2.2 Deep Generative Models 19

applied to samples from the training data. Concretely, we can start with a sample
x0 ∼ pd(x) and then apply T diffusion steps to obtain xT . The diffusion steps are
defined as

xt =
√

1− βtxt−1 +
√

βt · ϵt, ϵt ∼ N (0, I) . (2.27)

If we choose {βt}Tt=1 well, then xT will be pure noise. I.e., we can say xT ∼ N (0, I).
The diffusion model training objective simplifies to

||ϵt − ϵθ(xt, t)||2, (2.28)

where ϵθ(xt, t) is the output of a NN (Ho et al., 2020). While this objective is
conceptually and computationally simple, it is equivalent to doing VI in a latent
variable model where {xi}i<T−1 are the latent variables. Diffusion models are a key
component in the state-of-the-art text-to-image models DALLE-2 (Ramesh et al.,
2022) and Imagen (Saharia et al., 2022).

5. NFs—such as deep density models (Rippel and Adams, 2013), NICE (Dinh et al.,
2015), and RealNVP (Dinh et al., 2017)—are generative models which learn a
mapping from a simple base distribution (e.g., a Gaussian) to the data distribution.
The mapping is parameterised by an invertible NN. This allows for pθ(x) to be
computed exactly via a change of variables. However, the Jacobian of the NN must
be computed, which can be expensive.

6. VAEs (Kingma and Welling, 2014; Rezende et al., 2014), like NFs, learn a mapping
from a base distribution to the data distribution. However, unlike NFs, the mapping
NN is not invertible. Instead, similar to diffusion models, amortised VI is applied to
the latent variable z. For a VAE this is achieved by learning an inference network
(encoder) q (z |x), in conjunction with a generative network (decoder) p (x | z). Like
a GAN, a VAE can be sampled from by first sampling z from the prior p(z), often
chosen to be Gaussian, and then drawing samples from the generative network
x ∼ p (x | z). Unfortunately, the evidence cannot be calculated for a VAE, and we
are therefore unable to perform standard maximum likelihood learning. Thus, we
must resort to an alternative training objective, as discussed in Section 2.2.2.

Note that none of these methods include strong inductive biases about how the data
are generated, which is arguably a key component of generative modelling (Welling, 2019).
Instead, through their reliance on flexible NNs, these methods rely on inductive biases
such as smoothness and compact representations.



20 Background

Next, we discuss NFs and VAEs in more detail, as they will appear later in this thesis.

2.2.1 Normalising Flows

Flow-based generative models, often called Normalising Flows, use invertible functions
(bijectors) to transform samples z from a base distribution pz(z), often chosen to be an
isotropic Gaussian, into samples x from a target distribution px(x)

x = fθ(z), (2.29)

where f is usually a simple neural network parameterised by θ. Using the change of
variables formula, the density p(x) can be calculated as

px(x) = pz(z)| det Jf (z)|−1, (2.30)

where z = f−1(x) and Jf is the Jacobian of f . Importantly, (2.30) can be rewritten as

px(x) = pz(f
−1(x))| det Jf−1(x)|, (2.31)

which allows us to evaluate the density of samples from px(x). A key property of bijectors
is that their compositions are also bijectors. That is

f = f1 ◦ f2 ◦ . . . ◦ fT (2.32)

is a bijector if {ft}T1 are bijectors. Now, the inverse and Jacobian determinant are

f−1 = f−1
1 ◦ f−1

2 ◦ . . . ◦ f−1
T , (2.33)

det Jf (z) =
T∏
t=1

det Jft(f1:t−1(z)), (2.34)

where f1:t−1 is the composition of {fi}t−1
1 , and f1:0 is the identity. As a result of these

identities, it is possible to build complicated transformations as the composition of several
simple transformations.

Nevertheless, a challenge when building flow-based models is that the family of
functions ft must be chosen carefully if the model is to be trained efficiently. More
specifically, if ft is an arbitrary function, then the calculation of det Jf (z) will in general
be an O(D3) operation, where D is the dimensionality of the data. By placing restrictions,
such as partitioned input dimensions (Dinh et al., 2015) or using rank-1 weight matrices



2.2 Deep Generative Models 21

(Rezende and Mohamed, 2015), on ft, this cost can be reduced to O(D2). The form of f
is often still restricted despite being composed of several functions.

NFs have seen a plethora of developments and innovations. Key early works were NICE
(Dinh et al., 2015) and its extension RealNVP (Dinh et al., 2017). RealNVP has been
then extended with 1×1 convolutions in Glow (Kingma and Dhariwal, 2018), and auto-
regressive components with inverse autoregressive flows (Kingma et al., 2016) and masked
autoregressive flows (Papamakarios et al., 2017) (which both increase the flexibility of the
model at a computational cost that scales with the dimensionality of the data). Chen et al.
(2018) show that a neural ODE can be used to construct continuous normalizing flows
which can be trained efficiently and provide strong performance (Grathwohl et al., 2019).
More recently, Durkan et al. (2019) proposed Neural Spline Flows (NSFs) that provide
state-of-the-art results. NSFs replace the affine transformations found in RealNVP with
monotonic rational quadratic spline functions, which allows for increased flexibility and
better performance, sometimes matching more expensive autoregressive flows at a much
lower computational cost.

NFs have also been applied to several interesting applications including VI (Rezende
and Mohamed, 2015; van den Berg et al., 2018), BNNs (Louizos and Welling, 2017), semi-
supervised learning (Izmailov et al., 2020; Atanov et al., 2019b), and model distillation
(van den Oord et al., 2018). A thorough review of NFs can be found in Papamakarios
et al. (2021).

2.2.2 Variational Autoencoders

Like NFs, VAEs sample observations x by first sampling latent variables

z ∼ p (z) (2.35)

and then transforming the latent variables into observations

x ∼ p (x | z). (2.36)

Note that—unlike a NF—this is a stochastic transformation. Figure 2.1 shows the graph-
ical model for a VAE, which consists of the generative a prior p (z), a generative network
pθ(x | z) and an inference network qϕ(z |x).



22 Background

z

x θ

ϕ

N

Figure 2.1: VAE gen-
erative ( ) and infer-
ence ( ) models.

The evidence for a VAEs is intractable, thus an ELBO is used
as the training objective:

log p (x) = log

∫
pθ(x | z)p (z)dz (2.37)

= log

∫
pθ(x | z)p (z)

qϕ(z |x)
qϕ(z |x)

dz (2.38)

= logEqϕ(z |x)

[
pθ(x | z)

p (z)

qϕ(z |x)

]
(2.39)

≥ Eqϕ [log pθ(x | z)]− DKL [qϕ(z |x) || p (z)] . (2.40)

However, while this ELBO allows us to train VAEs it, by definition, implies that there is
an inference gap between our training objective and the object of interest. We can see
from the MLL:

log p (x) = Eqϕ(z |x)

[
log

pθ(x | z)p (z)
qϕ(z |x)

]
︸ ︷︷ ︸

ELBO

+ DKL [qϕ(z |x) || p (z |x)]︸ ︷︷ ︸
inference gap

(2.41)

that unless the variational distribution matches the true posterior exactly, the ELBO
will not be tight. Cremer et al. (2018) show that the inference gap is not only due to the
choice of variational family but also the ability of the inference network to choose good
variational parameters. Additionally, they show that the inference gap can be separated
into two terms: the approximation gap (due to the inability of qϕ(z |x) to match p (z |x))
and the amortisation gap (due to the use of amortised VI). One way to improve the
performance of the generative network is the Importance Weighted Autoencoder (IWAE)
(Burda et al., 2016), which uses multiple samples to better approximate the true posterior
and hence reduce the size of the inference gap:

log p (x) ≥ Eqϕ(z |x),...,qϕ(z |x)

[
log

1

K

K∑
k=1

pθ(x | zk)p (zk)
qϕ(zk |x)

]
≥ ELBO. (2.42)

Related to VAE, is the concept of disentangled representations. This refers to
interpretable and factorised latent representations, such that each dimension of the
latent controls a certain factor of variation in the generated data. For example, a
disentangled representation of faces might have one component which controls for eye
colour and another which controls for eyebrow thickness. When varied, each of these
components should only change the corresponding variable in the generated face. The
β-VAE (Higgins et al., 2017) modifies the objective in (2.40) by multiplying the KLD



2.3 Summary 23

term with a coefficient β that balances independence constraints on the elements of
z—assuming the standard isotropic Gaussian prior—with reconstruction accuracy. With
β > 1, representations tend to become more disentangled. However, the notion that
disentangled representations are accurate descriptions of the real-world data-generating
process has been challenged by Locatello et al. (2019), who suggest that without inductive
biases, unsupervised learning of disentangled representations is impossible.

VAEs are an active area of research. In fact, Kingma et al. (2016) originally proposed
the inverse autoregressive flow as a way to improve the performance of VAEs by increasing
the flexibility of the approximate posterior. More recently, Vahdat and Kautz (2020)
proposed a hierarchical VAE which provided state-of-the-art results for image generation
with VAEs (and NFs).

2.3 Summary

In this chapter, we have discussed the literature related to probabilistic approaches to
deep learning. We focused on two main areas: Bayesian deep learning and deep generative
models. In the case of Bayesian deep learning, we discussed the challenges of performing
probabilistic inference in NNs. We highlighted several challenges, including the difficulty
of choosing a good prior and the challenge of performing inference in high-dimensional
spaces. Chapters 3, 4 and 5 will all focus on improving uncertainty estimation in NNs by
addressing (or avoiding) these challenges. We also discussed how to compute and evaluate
uncertainties in NNs. In the case of deep generative models, we discussed several different
approaches to deep generative modelling, including auto-regressive models, EBMs, GANs,
diffusion models, NFs, and VAEs. We noted that none of these models include strong
inductive biases about how the data are actually generated, instead, they rely on flexible
NNs to learn the data distribution in various ways. Chapter 6 will focus on how to
incorporate stronger inductive biases into deep generative models.

In the next chapter, we will begin to address some of the challenges of uncertainty
estimation in NNs by avoiding inference in the high-dimensional weight space of NNs
altogether and instead performing inference over the depth of the network.





Chapter 3

Depth Uncertainty in Neural Networks

In this chapter, we introduce a method for inferring the depth of a NN and improving
the calibration of the model’s predictive uncertainty by marginalising the uncertainty
over the depth. Our contributions are:

1. In Section 3.2, we introduce Depth Uncertainty Networks (DUNs) our proposed
model that treats depth as a random variable, and we discuss how best to do
inference in DUNs, comparing Variational Inference (VI) and exact Marginal Log
Likelihood (MLL) maximisation.

2. We provide experimental validation for DUNs in Section 3.3. In particular, we
validate our inference strategy in Section 3.3.1. We demonstrate that DUNs provide
calibrated predictive uncertainty estimates in Sections 3.3.2 to 3.3.4. Finally, in
Sections 3.3.5 and 3.3.6 we apply DUNs to Neural Architecture Search (NAS) and
active learning.

This chapter is primarily based on the paper “Depth Uncertainty in Neural Networks”
(Antorán et al., 2020)—written in collaboration with Javier Antorán and José Miguel
Hernández-Lobato—with additional content from “Depth Uncertainty Networks for Active
Learning” (Murray et al., 2021b)—with Chelsea Murray, Javier and Miguel. The original
idea for Antorán et al. (2020) is due to Javier. I was heavily involved with all aspects of
the project, sharing responsibility with Javier for conceptualisation, exploration, coding,
evaluation, and presentation of the results, as well as writing the paper. For Murray
et al. (2021b), I took a more supervisory role focusing on conceptualisation and writing,
with Chelsea being responsible for all of the experimentation. Miguel provided guidance
and high-level input throughout both projects.



26 Depth Uncertainty in Neural Networks

f0x ŷ0

f0 f1x ŷ1

f0 f1 f2x ŷ2

f0 f1 f2 f3x ŷ3

f0 f1 f2 f3 f4x ŷ4

Figure 3.1: A DUN is composed of subnetworks of increasing depth (left, colours denote layers
with shared parameters). These correspond to increasingly complex functions (centre, colours
denote depth at which predictions are made). Marginalising over depth yields model uncertainty
through disagreement of these functions (right, error bars denote 1 std. dev.).

3.1 Motivation

Despite the widespread adoption of deep learning, building models that provide robust
uncertainty estimates remains a challenge. This is especially important for real-world
applications, where we cannot expect the distribution of observations to be the same
as that of the training data. Deep models tend to be pathologically overconfident, even
when their predictions are incorrect (Nguyen et al., 2015; Amodei et al., 2016). If artificial
intelligence systems would reliably identify cases in which they expect to underperform
and request human intervention, they could more safely be deployed in medical scenarios
(Filos et al., 2019) or self-driving vehicles (Levinson et al., 2011), for example.

In response, a rapidly growing subfield has emerged seeking to build uncertainty-
aware NNs (Hernández-Lobato and Adams, 2015; Gal and Ghahramani, 2016; Lakshmi-
narayanan et al., 2017). Regrettably, these methods rarely make the leap from research
to production due to a series of shortcomings:

1. Implementation Complexity: they can be technically complicated and sensitive to
hyperparameter choice.

2. Computational cost: they can take orders of magnitude longer to converge than
regular networks or require training multiple networks. At test time, averaging the
predictions from multiple models is often required.

3. Weak performance: they rely on crude approximations to achieve scalability, result-
ing in unreliable uncertainty estimates (Foong et al., 2020; Burt et al., 2021).

In this chapter, we introduce DUNs, a probabilistic model that treats the depth
of a NN as a random variable over which to perform inference. In contrast to more
typical weight-space approaches for Bayesian inference in NNs—e.g., as described in



3.2 Depth Uncertainty Networks 27

x

yθ d

β

N

f0
f1

f2
f3

f4

fD

x

fD+1 ŷi

Figure 3.2: Left: graphical model under consideration. Right: computational model. Each
layer’s activations are passed through the output block, producing per-depth predictions.

Section 2.1.2—ours reflects a lack of knowledge about how deep our NN should be. We
treat NN weights as learnable hyperparameters. In DUNs, marginalising over depth
is equivalent to performing Bayesian Model Averaging (BMA) over an ensemble of
progressively deeper NNs. As shown in Figure 3.1, DUNs exploit the overparametrisation
of a single deep NN to generate diverse explanations of the data. The key advantages of
DUNs are:

1. Implementation simplicity : requiring only minor additions to vanilla deep learning
code, and no changes to the hyperparameters or training regime.

2. Cheap deployment : computing exact predictive posteriors with a single forward
pass.

3. Calibrated uncertainty : our experiments show that DUNs are competitive with
strong baselines in terms of predictive performance, Out-of-distribution (OOD)
detection, and robustness to corruptions.

3.2 Depth Uncertainty Networks

Consider a dataset D= {x(n),y(n)}Nn=1 and a NN composed of an input block f0(·), D
intermediate blocks {fd(·)}Dd=1, and an output block fD+1(·). Each block is a group of
one or more stacked linear and non-linear operations. The activations at depth d ∈ [0, D],
ad, are obtained recursively as ad = fd(ad−1), a0= f0(x).

A forward pass through the NN is an iterative process, where each successive block
fd(·) refines the previous block’s activation. Predictions can be made at each step of
this procedure by applying the output block to each intermediate block’s activations:
ŷd = fD+1(ad). This computational model is displayed in Figure 3.2. Recall, from
Figure 3.1, that we can leverage the disagreement among intermediate blocks’ predictions
to quantify model uncertainty.



28 Depth Uncertainty in Neural Networks

3.2.1 Probabilistic Model: Depth as a Random Variable

We place a categorical prior over NN depth pβ(d) = Cat (d |β). Referring to NN weights
as θ, we parametrise the likelihood for each depth using the corresponding subnetwork’s
output: p (y |x, d = d; θ) = p (y | fD+1(ad; θ)). A graphical model is shown in Figure 3.2.
For a given weight configuration, the likelihood for every depth, and thus our model’s
MLL,

log p (D; θ) = log
D∑

d=0

(
pβ(d = d) ·

N∏
n=1

p
(
y(n)

∣∣x(n), d = d; θ
))

, (3.1)

can be obtained with a single forward pass over the training set by exploiting the
sequential nature of feed-forward NNs. The posterior over depth,

p (d | D; θ) = p (D | d; θ)pβ(d)
p (D; θ) , (3.2)

is a categorical distribution that tells us about how well each subnetwork explains the
data.

A key advantage of deep NN lies in their capacity for automatic feature extraction
and representation learning. For instance, Zeiler and Fergus (2014) demonstrate that
CNNs detect successively more abstract features in deeper layers. Similarly, Frosst
et al. (2019) find that maximising the entanglement of different class representations
in intermediate layers yields better generalisation. Given these results, using all of our
network’s intermediate blocks for prediction might be suboptimal. Instead, we infer
whether each block should be used to learn representations or perform predictions, which
we can leverage for ensembling, by treating network depth as a random variable. As
shown in Figure 3.3, subnetworks too shallow to explain the data are assigned low
posterior probability; they perform feature extraction.

3.2.2 Inference in DUNs

We consider learning NN weights by directly maximising (3.1) with respect to θ, using
backpropagation and the log-sum-exp trick. However, the gradients of (3.1) reaching each
subnetwork are weighted by the corresponding depth’s posterior mass:

∂

∂θ
log p (D; θ) = ∂

∂θ
logsumexpd(log p (D | d; θ) + log p (d))



3.2 Depth Uncertainty Networks 29

=
D∑

d=0

p (D | d = d; θ)p (d = d)∑D
d′=0 p (D | d = d′; θ)p (d = d′)

∂

∂θ
log p (D | d = d; θ)

=
D∑

d=0

p (d = d | D; θ) ∂

∂θ
log p (D | d = d; θ)

= Ep(d | D;θ)

[
∂

∂θ
log p (D | d; θ)

]
. (3.3)

This leads to local optima where all but one subnetworks’ gradients vanish since the
weights of the subnetwork that best explains the data at initialisation will receive larger
gradients. This will result in this depth fitting the data even better and receiving
larger gradients in successive iterations while the gradients for subnetworks of different
depths vanish, creating a rich get richer scenario. Thus, the MLL objective is prone
to hard-to-escape local optima, at which a single depth is used, or in other words, at
which the posterior collapses to a delta function over an arbitrary depth, leaving us with
a deterministic NN. This can be especially problematic if the initial posterior has its
maximum over shallow depths, as this will reduce the capacity of the NN.

When working with large datasets, one might indeed expect the true posterior
over depth to be a delta. However, because modern NNs are underspecified even for
large datasets, multiple depths should be able to explain the data simultaneously (as
demonstrated in Figure 3.3).

We can avoid the above pathology by decoupling the optimisation of NN weights θ
from the posterior distribution. In latent variable models, the expectation maximisation
algorithm (Bishop, 2006) allows us to optimise the MLL by iteratively computing
p (d | D; θ) and then updating θ. We propose to use stochastic gradient VI as an
alternative more amenable to NN optimisation. We introduce a surrogate categorical
distribution over depth qα(d) = Cat (d |α), and use this to construct a lower bound on
(3.1):

log p (D; θ) = log
∑
d

[p (D, d = d; θ)]

= log

[∑
d

p (D, d; θ)qα(d)
qα(d)

]
▷

(
×1 =

qα(d)

qα(d)

)
= log

[
Eqα(d)

p (D | d; θ)pβ(d)
qα(d)

]
≥ Eqα(d)

[
log

p (D | d; θ)pβ(d)
qα(d)

]
▷ (Jensen’s Inequality)



30 Depth Uncertainty in Neural Networks

=
N∑

n=1

Eqα(d)
[
log p

(
y(n)

∣∣x(n), d; θ
)]
− DKL [qα(d) || pβ(d)]

= L(α,θ). (3.4)

This Evidence Lower BOund (ELBO) allows us to optimise the variational parameters
α and network weights θ simultaneously using gradients. Because both our variational
and true posteriors are categorical, (3.4) is convex with respect to α. At the optima,
qα(d) = p (d | D; θ) and the bound is tight. Thus, we perform exact rather than
approximate inference.

In contrast to optimisation of (3.1), VI decouples the likelihood at each depth from
the approximate posterior during optimisation:

∂

∂θ
L =

D∑
d=0

qα(d = d)
∂

∂θ
log p (D | d = d; θ) (3.5)

∂

∂αd

L = log p (D | d = d; θ)
∂

∂αd

qα(d = d)− (log qα(d)− log pβ(d) + 1)
∂

∂αi

qα(d) (3.6)

For moderate to large datasets, when updating the variational parameters α, the data
dependent term of the ELBO’s gradient will dominate. However, the gradients that reach
the variational parameters are scaled by the log-likelihood at each depth. In contrast,
in (3.3), the posterior for each depth scales the gradients directly. We conjecture that,
with VI, α will converge more slowly than the true posterior when optimising the MLL
directly. This allows network weights to reach solutions that explain the data well at
multiple depths. In Section 3.3.1, we show that this does seem to be the case.

In addition to making optimisation easier, Eqα(d) [log p (y |x, d; θ)] can be computed
from the activations at every depth. Consequently, both terms in (3.4) can be evaluated
exactly, with only a single forward pass. This removes the need for high variance Monte
Carlo (MC) gradient estimators, often required by VI methods for NNs. When using
mini-batches of size B, we stochastically estimate the ELBO in (3.4) as

L(α,θ) ≈ N

B

B∑
n=1

D∑
d=0

(
log p

(
y(n)

∣∣x(n), d = d; θ
)
· αd

)
−

D∑
d=0

(
αd log

αd

βd

)
. (3.7)



3.3 Experiments 31

Predictions for new data x∗ are made by marginalising depth with the variational
posterior:

p (y∗ |x∗, D; θ) =
D∑

d=0

p (y∗ |x∗, d = d; θ)qα(d = d). (3.8)

3.3 Experiments

First, we compare the MLL and VI training approaches for DUNs. We then evaluate
DUNs on toy-regression, real-world regression, and image classification tasks. As baselines,
we provide results for vanilla NNs (denoted as ‘Stochastic Gradient Descent (SGD)’),
MC Dropout (Gal and Ghahramani, 2016), and deep ensembles (Lakshminarayanan
et al., 2017), arguably the strongest approach for uncertainty estimation in deep learning
(Ovadia et al., 2019; Ashukha et al., 2020). For regression tasks, we also include
Gaussian Mean-Field Variational Inference (MFVI) (Blundell et al., 2015) with the local
reparametrisation trick (Kingma et al., 2015). For image robustness tasks, we also compare
against Stochastic-ResNets (Huang et al., 2016) and deep ensembles of networks with
multiple depths. We study all methods in terms of accuracy, uncertainty quantification,
and robustness to corrupted or OOD data. We place a uniform prior over DUN depth. See
Section 2.1.3, Section 2.1.4, and Section A.2 for detailed descriptions of the techniques
we use to compute and evaluate uncertainty estimates, and our experimental setup,
respectively. Code is available at https://github.com/cambridge-mlg/DUN.

3.3.1 Comparing MLL and VI training

Figures 3.3a and 3.3b compare the optimisation of a 5 hidden layer fully connected DUN
on the concrete, and wine datasets using estimates of the MLL (3.1) and ELBO (3.7). In
both cases, the former approach converges to a local optima where all but one depth’s
probabilities go to 0. Note that while the posterior, in Figure 3.3b, collapses to a non-zero
depth, we found that a depth of 0 was most common in collapsed posteriors. With VI,
the surrogate posterior converges more slowly than the network weights. This allows θ
to reach a configuration where multiple depths can be used for prediction. Towards the
end of training, the variational gap vanishes. The surrogate distribution approaches the
true posterior without collapsing to a delta. The MLL values obtained with VI are larger
than those obtained with (3.1), i.e., our proposed approach finds better explanations for
the data.

https://github.com/cambridge-mlg/DUN


32 Depth Uncertainty in Neural Networks

−500

0

500

1000

1500

na
ts

MLL Objective VI Objective

MLL
ELBO

0 1000 2000 3000 4000

epochs

100

10−1

10−2

10−3pr
ob

ab
ili

ti
es

0 1000 2000 3000 4000

epochs

p(d=0)

p(d=1)

p(d=2)

p(d=3)

p(d=4)

p(d=5)

(a) Concrete

−1000

0

1000

2000

3000

na
ts

MLL
ELBO

0 1000 2000 3000 4000

epochs

100

10−1

10−2

10−3

pr
ob

ab
ili

ti
es

0 1000 2000 3000 4000

epochs

p(d=0)

p(d=1)

p(d=2)

p(d=3)

p(d=4)

p(d=5)

(b) Wine

−15000

−10000

−5000

0

na
ts

MLL
ELBO

0 20 40 60 80

epochs

100

10−1

10−2

10−3pr
ob

ab
ili

ti
es

0 20 40 60 80 100

epochs

p(d=0)

p(d=1)

p(d=2)

p(d=3)

p(d=4)

p(d=5)

(c) Fashion-MNIST

Figure 3.3: Top row: progression of MLL and ELBO during training. Bottom: progression
of all six depth posterior probabilities. The left column corresponds to optimising the MLL
directly and the right to VI. For the latter, variational posterior probabilities q (d) are shown,
and the MLL is calculated but not used for optimisation.



3.3 Experiments 33

Dropout MFVI DUN Ensemble GP-RBF

Figure 3.4: Top row: toy dataset from Izmailov et al. (2019). Bottom: Wiggle dataset. Black
dots denote data points. Error bars represent the standard deviation among mean predictions.

In Figure 3.3c, both training schemes obtain very similar MLL values. The dataset
under consideration is much larger than the one in Figures 3.3a and 3.3b, but the
dimensionality of the latent variable stays the same. Hence, the variational gap is small
relative to the MLL. Nevertheless, unlike with the MLL objective, VI training results in
posteriors that avoid placing all of their mass on a single depth setting. Additionally, in
Figure 3.3c, we optimise (3.1) after reaching a local optima with (3.7). This does not
cause posterior collapse, showing that MLL optimisation’s poor performance is due to a
propensity for poor local optima.

3.3.2 Toy Datasets

In Figure 3.4, we consider two synthetic 1D datasets and compare DUNs with base-
lines. We use 3-hidden-layer, 100-hidden-unit, fully connected networks with residual
connections for the baselines. DUNs use the same architecture but with 15 hidden layers.
Gaussian Processes (GPs) use the RBF kernel. We found these configurations to work
well empirically.

The first dataset, which is taken from Izmailov et al. (2019), contains three disjoint
clusters of data. Both MFVI and Dropout present error bars that are similar in the
data-dense and in-between regions. MFVI underfits slightly, not capturing smoothness
in the data. DUNs perform most similarly to Ensembles. They are both able to fit the
data well and express in-between uncertainty. Their error bars become large very quickly
in the extrapolation regime.

Our second dataset consists of 300 samples from y = sin(πx)+0.2 cos(4πx)− 0.3x+ ϵ,
where ϵ ∼ N (0, 0.25) and x ∼ N (5, 2.5). We dub it “Wiggle”. Dropout struggles to fit
this faster varying function outside of the data-dense regions. MFVI fails completely.



34 Depth Uncertainty in Neural Networks

DUNs and Ensembles both fit the data well and provide error bars that grow as the data
becomes sparse.

5 layer DUN 10 layer DUN 15 layer DUN 5 layer MLP DUN 10 layer MLP DUN 15 layer MLP DUN

Figure 3.5: DUN depth experiments. Left 3 columns: DUNs with residual connections. Right
3 columns: DUNs without residual connections. Row 1: a simple dataset made up of 3 disjoint
clusters (Simple_1d). Row 2: taken from (Izmailov et al., 2019). Row 3: taken from (Foong
et al., 2019). Row 4: generated by sampling from a GP with a Matern kernel. Row 5: Wiggle
dataset.

D
U

N
R

es
N

et
D

U
N

M
LP

D
ee

p
En

se
m

bl
e

Figure 3.6: Comparison of DUN and en-
semble fits for the Simple_1d dataset with
15 layer DUNs, and 20× 3-hidden-layer en-
semble elements. Left: mean predictions
and standard deviations. Right: individ-
ual predictions. For DUNs, the individual
predictions are weighted by qα(d), whereas
ensembles use an equal weighting.

In the above experiments, we used DUNs
with more layers than the baselines because
DUN performance benefits from depth. This
is due to two reasons. Firstly, increased depth
means increasing the number of explanations
of the data which are marginalised. Secondly,
deeper subnetworks are able to express faster
varying functions, which are more likely to dis-
agree with each other. Figure 3.5 shows that
performance increases with depth. However, of-
ten 5 layers are sufficient to produce reasonable,
while slightly smaller, uncertainty estimates.
Figure 3.5 also shows results for DUNs with-
out residual connections. Here we see that the
uncertainty estimates, especially for shallower
models, are much smaller—particularly in the extrapolation regime.



3.3 Experiments 35

We further compare the in-distribution fits from residual DUNs, Multi-Layer Percep-
tron (MLP) DUNs, and deep ensembles in Figure 3.6. Ensemble elements differ slightly
from each other in their predictions within the data-dense regions. These predictions are
averaged, making for mostly smooth functions. Functions expressed at most depths of the
MLP DUNs seem to vary together rapidly within the data region. Their mean prediction
also varies rapidly, suggesting overfitting. In an MLP architecture, each successive layer
only receives the previous one’s output as its input. We hypothesise that, because of this
structure, once a layer overfits to a data point, the following layer is unlikely to modify
the function in the area of that data point, as that would increase the training loss. This
leads to most subnetworks only disagreeing about their predictions out of distribution.
Functions expressed by residual DUNs differ somewhat in distribution, allowing some
robustness to overfitting. We hypothesise that this occurs because each layer takes a
linear combination of all previous layers’ activations as its input. This prevents reusing
the previous subnetworks’ fits. Ensembles provide diverse explanations both in and out
of distribution. This results in both better accuracy and predictive uncertainty than
single models. DUNs provide explanations which differ from each other mostly OOD.
They provide uncertainty estimates OOD, but their accuracy on in-distribution points is
similar to that of a single model.

3.3.3 Tabular Regression

We evaluate DUNs alongside NN-based baselines on UCI regression datasets using stan-
dard and gap splits as in Hernández-Lobato and Adams (2015); Foong et al. (2019).
Although we follow standard procedure to compare only with NN baselines (Laksh-
minarayanan et al., 2017; Foong et al., 2019), we believe that GPs would make an
interesting point of comparison due to their exact inference in these small-scale settings.
We encourage future researchers to include them as a baseline. We also use the large-scale
non-stationary flight delay dataset, preprocessed by Hensman et al. (2013). Following
Deisenroth and Ng (2015), we train on the first 2M data points and test on the subsequent
100k. We select all hyperparameters, including NN depth, using Bayesian optimisation
with HyperBand (Falkner et al., 2018). See Section A.2.2 for details. We evaluate
methods with Root Mean Squared Error (RMSE), Log Likelihood (LL), Regression
Calibration Error (RCE), and Tail Calibration Error (TCE). The latter two measures
are novel:

• Regression Calibration Error (RCE) (lower is better): We extend the idea of
Expected Calibration Error (ECE) to regression settings. We seek to assess how



36 Depth Uncertainty in Neural Networks

well our model’s predictive distribution describes the residuals obtained on the
test set. It is not straightforward to define bins, like in standard ECE, because
our predictive distribution might not have finite support. We apply the CDF
of our predictive distribution to our test targets. If the predictive distribution
describes the targets well, the transformed distribution should resemble a uniform
with support [0, 1]. This procedure is common for back testing market risk models
(Dowd, 2013).

To assess the global similarity between our targets’ distribution and our predictive
distribution, we separate the [0, 1] interval into S equal-sized bins {Bs}Ss=1. We
compute calibration error in each bin as the difference between the proportion of
points that have fallen within that bin and 1/S:

RCE =
S∑

s=1

|Bs|
N
·
∣∣∣∣ 1S − |Bs|

N

∣∣∣∣; |Bs| =
N∑

n=1

1[CDFp(y |x(n))(y
(n)) ∈ Bs] (3.9)

• Tail Calibration Error (TCE) (lower is better): Alternatively, we can assess how
well our model predicts extreme values with a “frequency of tail losses” approach
(Kupiec, 1995). It might not be realistic to assume the noise in our targets is
Gaussian. Only considering calibration at the tails of the predictive distribution
allows us to ignore the shape mismatch between the predictive distribution and
the true distribution over targets. Instead, we focus on our model’s capacity to
predict which inputs it is likely to make large mistakes. This can be used to ensure
our model is not overconfident OOD. We specify two bins {B0, B1}, one at each
tail end of our predictive distribution, and compute TCE as:

TCE =
1∑

s=0

|Bs|
|B0|+ |B1|

·
∣∣∣∣1τ − |Bs|

N

∣∣∣∣;
|B0| =

N∑
n=1

1[CDFp(y|x(n))(y
(n)) < τ ]; |B1| =

N∑
n=1

1[CDFp(y|x(n))(y
(n)) ≥ (1− τ)]

We specify the tail range of our distribution by selecting τ . Note that this is slightly
different from Kupiec (1995), who uses a binomial test to assess whether a model’s
predictive distribution agrees with the distribution over targets in the tails.

RCE and TCE are not proper scoring rules. Additionally, they are only applicable to
1-dimensional continuous target variables.



3.3 Experiments 37

UCI standard split results are found in Figure 3.7. For each dataset and metric, we rank
methods from 1 to 5 based on mean performance. We report mean ranks and standard
deviations. Dropout obtains the best mean rank in terms of RMSE, followed closely
by Ensembles. DUNs are third, significantly ahead of MFVI and SGD. Even so, DUNs
outperform Dropout and Ensembles in terms of TCE, i.e., DUNs more reliably assign large
error bars to points on which they make incorrect predictions. Consequently, in terms of
LL, a metric which considers both uncertainty and accuracy, DUNs perform competitively
(the LL rank distributions for all three methods overlap almost completely). MFVI
provides the best calibrated uncertainty estimates. Despite this, its mean predictions are
inaccurate, as evidenced by it being last in terms of RMSE. This leads to MFVI’s LL
rank only being better than SGD’s. Results for gap splits, designed to evaluate methods’
capacity to express in-between uncertainty, Figure 3.8. Here, DUNs outperform Dropout
in terms of LL rank. However, they are both outperformed by MFVI and ensembles.

The flights dataset is known for strong covariate shift between its train and test sets,
which are sampled from contiguous time periods. LL values are strongly dependent on
calibrated uncertainty. As shown in Table 3.1, DUNs’ RMSE is similar to that of SGD,
with Dropout and Ensembles performing best. Again, DUNs present superior uncertainty
calibration. This allows them to achieve the best LL, tied with Ensembles and Dropout.
We speculate that DUNs’ calibration stems from being able to perform exact inference,
albeit in depth space.

In terms of prediction time, DUNs clearly outrank Dropout, Ensembles, and MFVI
on UCI. Due to depth, or maximum depth D for DUNs, being chosen with Bayesian
optimisation, methods’ batch times vary across datasets. DUNs are often deeper because
the quality of their uncertainty estimates improves with additional explanations of the
data. As a result, SGD clearly outranks DUNs. On flights, increased depth causes DUNs’
prediction time to lie in between Dropout’s and Ensembles’.

Table 3.1: Results obtained on the flights dataset (2M). Mean and std. dev. values are
computed across 5 independent training runs.

LL ↑ RMSE ↓ TCE ↓ Time ↓
DUN -4.95 ±0.01 34.69 ±0.28 0.087 ±0.009 0.026 ±0.001

Dropout -4.95 ±0.02 34.28 ±0.11 0.096 ±0.017 0.016 ±0.001

Ensemble -4.95 ±0.01 34.32 ±0.13 0.090 ±0.008 0.031 ±0.001

MFVI -5.02 ±0.05 36.72 ±1.84 0.068 ±0.014 0.547 ±0.003

SGD -4.97 ±0.01 34.61 ±0.19 0.084 ±0.010 0.002 ±0.000



38 Depth Uncertainty in Neural Networks

1

2

3

4

5

rank ↓

−3.25

−3.00

−2.75

−2.50

−2.25

LL

boston

−3.2

−3.0

−2.8

concrete

−2.0

−1.5

−1.0

energy

1.1

1.2

kin8nm

3.5

4.0

4.5

5.0

5.5

naval

−2.9

−2.8

−2.7

power

−2.9

−2.8

−2.7

−2.6

protein

−1.2

−1.1

−1.0

−0.9

wine

−2.5

−2.0

−1.5

−1.0

yacht

1

2

3

4

5

2.5

3.0

3.5

4.0

R
M

SE

4.5

5.0

5.5

6.0

0.5

1.0

1.5

0.065

0.070

0.075

0.080

0.085

0.002

0.004

0.006

3.5

4.0

3.5

4.0

4.5

0.60

0.62

0.64

0.66

0.68

0.5

1.0

1.5

2.0

2.5

1

2

3

4

5

0.04

0.05

0.06

R
C

E

0.03

0.04

0.05

0.05

0.10

0.15

0.01

0.02

0.03

0.04

0.1

0.2

0.01

0.02

0.03

0.02

0.04

0.06

0.02

0.03

0.04

0.05

0.1

0.2

0.3

1

2

3

4

5

0.025

0.050

0.075

0.100

0.125

TC
E

0.02

0.04

0.06

0.08

0.1

0.2

0.02

0.04

0.06

0.1

0.2

0.3

0.01

0.02

0.03

0.04

0.05

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

0.1

0.2

0.3

0.4

1

2

3

4

5

0.00

0.01

0.02

0.03

ba
tc

h
ti

m
e

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

DUN Dropout Ensemble MFVI SGD

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.000

0.025

0.050

0.075

0.100

0.00

0.01

0.02

0.03

0.04

Figure 3.7: Quartiles for results on UCI regression datasets across standard splits. Average
ranks are computed across datasets. For LL, higher is better. Otherwise, lower is better.



3.3 Experiments 39

1

2

3

4

5

rank ↓

−4.5

−4.0

−3.5

−3.0

−2.5

LL

boston

−6

−5

−4

concrete

−20

−15

−10

−5

energy

0.9

1.0

1.1

1.2

kin8nm

−600

−400

−200

0

naval

−3.2

−3.1

−3.0

−2.9

power

−4.0

−3.5

−3.0

protein

−2.0

−1.5

−1.0

wine

−2.4

−2.2

−2.0

−1.8

yacht

1

2

3

4

5

3.5

4.0

R
M

SE

6.5

7.0

7.5

8.0

2.5

5.0

7.5

10.0

0.07

0.08

0.09

0.02

0.03

0.04

0.05

4.2

4.4

4.6

4.8

4.5

5.0

5.5

0.65

0.70

0.75

1.5

2.0

2.5

1

2

3

4

5

0.05

0.10

0.15

R
C

E

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.25

0.01

0.02

0.03

0.2

0.4

0.6

0.8

0.01

0.02

0.03

0.04

0.05

0.025

0.050

0.075

0.100

0.125

0.05

0.10

0.15

0.05

0.10

0.15

0.20

1

2

3

4

5

0.1

0.2

0.3

TC
E

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.02

0.04

0.06

0.08

0.2

0.4

0.6

0.8

0.025

0.050

0.075

0.100

0.125

0.05

0.10

0.15

0.20

0.1

0.2

0.3

0.1

0.2

0.3

1

2

3

4

5

0.00

0.02

0.04

ba
tc

h
ti

m
e

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

DUN Dropout Ensemble MFVI SGD

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.00

0.01

0.02

Figure 3.8: Quartiles for results on UCI regression datasets across gap splits. Average ranks
are computed across datasets. For LL, higher is better. Otherwise, lower is better.



40 Depth Uncertainty in Neural Networks

3.3.4 Image Classification

We train ResNet-50 (He et al., 2016a) using all methods under consideration. This model
is composed of an input convolutional block, 16 residual blocks and a linear layer. For
DUNs, our prior over depth is uniform over the first 13 residual blocks. The last 3 residual
blocks and linear layer form the output block, providing the flexibility to make predictions
from activations at multiple resolutions. We use 1×1 convolutions to adapt the number
of channels between earlier blocks and the output block. We use default PyTorch training
hyperparameters1 for all methods. We set per-dataset learning rate schedules. We use
5-element ensembles, as suggested by Ovadia et al. (2019), and 10 dropout samples.
Mean values and standard deviations are computed across 5 independent training runs.
Full details are given in Section A.2.3.

0.0

0.2

0.4

0.6

0.8

er
ro

r

Rotated MNIST

0.1

0.2

0.3

0.4

Corrupted CIFAR10

0 30 60 90 120 150 180

rotation (◦)

−7

−6

−5

−4

−3

−2

−1

0

LL

DUN
Ensemble
Dropout
SGD
Depth-Ens (5)
Depth-Ens (13)
S-ResNet

0 1 2 3 4 5

corruption

−2.5

−2.0

−1.5

−1.0

−0.5

Figure 3.9: Left: error and LL for MNIST at varying degrees of rotation. Right: error and LL
for CIFAR10 at varying corruption severities.

Rotated MNIST In Figure 3.9, following Ovadia et al. (2019), we train all methods
on MNIST and evaluate their predictive distributions on increasingly rotated digits.
Although all methods perform well on the original test set, their accuracy degrades

1https://github.com/pytorch/examples/blob/master/imagenet/main.py

https://github.com/pytorch/examples/blob/master/imagenet/main.py


3.3 Experiments 41

quickly for rotations larger than 30°. Here, DUNs and Stochastic-ResNets differentiate
themselves by being the least overconfident. We hypothesise that predictions based
on features at diverse resolutions allow for increased disagreement. This hypothesis is
supported by Figure 3.10, which shows that methods that make predictions at different
resolutions do indeed have increased disagreement, as measured by the KLD between
different layers’ or samples’ predictions.

0 30 60 90 120 150 180

rotation

0.0

0.2

0.4

0.6

0.8

1.0

K
L

di
ve

rg
en

ce

MNIST Diversity

DUN
Ensemble
Dropout
SGD
S-ResNet

Figure 3.10: Comparison of different mod-
els’ Kullback-Leibler Divergence (KLD) be-
tween predictions.

Corrupted CIFAR In Figure 3.9, again fol-
lowing Ovadia et al. (2019), we train models on
CIFAR10 and evaluate them on data subject to
16 different corruptions with 5 levels of intensity
each (Hendrycks and Dietterich, 2019). Here,
Ensembles (standard and multi-depth) signif-
icantly outperform all single network methods
in terms of error and LL at all corruption levels.
DUNs perform similarly to SGD and Dropout
on the uncorrupted data. Despite only requir-
ing a single forward pass for predictions, LL
values reveal DUNs to be the second most ro-
bust to corruption. Interestingly, in this case,
Stochastic-ResNets do not perform well—only being better than SGD.

OOD Rejection In Figure 3.11, we simulate a realistic OOD rejection scenario (Filos
et al., 2019) by jointly evaluating our models on an in-distribution and an OOD test set.
We allow our methods to reject increasing proportions of the data based on predictive
entropy before classifying the rest. All predictions on OOD samples are treated as
incorrect. Ensembles are a clear best in most cases. DUNs provide a mixed performance,
sometimes performing well and other times showing underconfidence: they are incapable
of separating very uncertain in-distribution inputs from OOD points. We re-run DUNs
using the exact posterior over depth p (d | D; θ) in (3.8), instead of qα(d). The exact
posterior is computed while setting batch-norm to test mode. This also performs well in
some cases while showing underconfidence in others. This inconsistency requires further
investigation.

Compute Time We compare methods’ performance on corrupted CIFAR10 as a
function of computational budget. In general, DUNs are Pareto superior to the baselines,



42 Depth Uncertainty in Neural Networks

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVHN vs CIFAR10

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs KMNIST

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR100 vs SVHN

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

DUN Ensemble Dropout SGD DUN (exact)

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs MNIST

Figure 3.11: Rejection-classification plots. The black line denotes the theoretical maximum
performance; all in-distribution samples are correctly classified, and OOD samples are rejected
first.

0 2

time (s)

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

−1.8

−1.6

−1.4

−1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

−2.4

−2.2

−2.0

−1.8

−1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

Figure 3.12: Pareto frontiers showing LL for corrupted CIFAR10 vs batch prediction time.
The batch size is 256, split over 2 Nvidia P100 GPUs. Annotations show ensemble elements
and Dropout samples. Note that a single-element ensemble is equivalent to SGD.



3.3 Experiments 43

with the superiority growing larger as the severity of the corruption is increased. In the
best case, for the most severe corruptions, the LL obtained by a DUN matches that of a
∼1.8 element ensemble. A single DUN forward pass is ∼1.02 times slower than a vanilla
network’s. On average, DUNs’ computational budget matches that of ∼0.47 ensemble
elements or ∼0.94 dropout samples. These values are smaller than one due to overhead,
such as ensemble element loading. Thus, making predictions with DUNs is 10× faster
than with five-element ensembles.

0.25

0.50

0.75

er
ro

r

ImageNet Corruption Robustness

0 1 2 3 4 5

corruption

−5

−4

−3

−2

−1

LL

DUN
Ensemble
Dropout
SGD

Figure 3.13: Error and LL for ImageNet at
varying corruption severities.

Scaling to ImageNet We train DUN
(1-13) and baselines on the ILSVRC2015
dataset (Russakovsky et al., 2015). Fig-
ure 3.13 shows the performance of DUNs
and various baselines for increasing corrup-
tion levels. In contrast to Figure 3.9, DUNs
perform the worst. This is likely due to
ResNet-50 not having sufficient capacity to
perform both representation learning and
make predictions at multiple depths. How-
ever, as these results do not include error
bars, we cannot make strong conclusions.
Nevertheless, it would be interesting to train
a larger DUN, such as a ResNet-112, and compare the results.

3.3.5 DUNs for Neural Architecture Search

In this section, we briefly explore the application of DUNs to NAS.
After training a DUN, as described in Section 3.2.2, qα(d = d) = αd represents our

confidence that the depth we should use is d. We would like to use this information to
prune our network such that we reduce computational cost while maintaining performance.
Recall our training objective (3.4):

L(α,θ) =∑N
n=1 Eqα(d)

[
log p

(
y(n)

∣∣x(n), d; θ
)]
− DKL [qα(d) || pβ(d)] .

Notice that the likelihood term scales with the dataset size, while the KLD does not. In
low data regimes, where both the log-likelihood and KLD terms are of comparable scale,



44 Depth Uncertainty in Neural Networks

we obtain a posterior with a clear maximum. We choose

dopt = argmax
d

αd (3.10)

as our fixed depth. In medium-to-big data regimes, where the log-likelihood dominates
our objective, we find that the values of αi flatten out after reaching an appropriate
depth. For examples of this phenomenon, compare the approximate posteriors over depth
shown in Figure 3.14 and Figure 3.15. We propose two heuristics for choosing dopt in
this setting. The first is to use the expected value of the depth:

dopt = round(Eqα(d) [d]). (3.11)

The second is to choose the depth that achieves 95% of the maximum posterior density:

dopt = min
i
{i : q (d = i) ≥ 0.95max

j
q (d = j)}. (3.12)

Both heuristics aim to keep the minimum number of blocks needed to explain the data
well. We prune all blocks after dopt by setting qα(d = dopt) = qα(d ≥ dopt) and then
qα(d > dopt) = 0. We refer to pruned DUNs as Learnt Depth Networks (LDNs) and
contrast them with (standard) Deterministic Depth Networks (DDNs) in the following
experiments.

We generate a 2D training set by drawing 200 samples from a 720° rotation 2-armed
spiral function with additive Gaussian noise of σ = 0.15. The test set is composed of an
additional 1800 samples. Choosing a relatively small width for each hidden layer w = 20

to ensure the task can not be solved with a shallow model, we train fully-connected LDNs
with varying maximum depths D and DDNs of all depths up to D = 100. Figure 3.14
shows how the depths to which LDNs assign larger probabilities match those at which
DDNs perform best. Predictions from LDNs pruned to dopt layers outperform DDNs at
all depths. The chosen dopt remains stable for increasing maximum depths up to D ≈ 50.
The same is true for test performance, showing some robustness to overfitting. After this
point, training starts to become unstable. We repeat experiments 6 times and report
standard deviations as error bars.

We further evaluate LDNs on MNIST, Fashion-MNIST, and SVHN. Note that the
network architecture used for these experiments is different from that used for experiments
on the same datasets in Section 3.3.4. It is described below. Each experiment is repeated
4 times to produce error bars. The results obtained with D = 50 are shown in Figure 3.15.
The larger size of these datasets diminishes the effect of the prior on the ELBO. Models



3.3 Experiments 45

0 10 20 30 40 50

d (No. active blocks)

0.00

0.01

0.02

0.03

0.04

0.05

q a
(d

)

20 40 60 80 100

D (max depth)

0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

0.6

0.7

0.8

0.9

1.0

te
st

lo
g-

lik
e

LDN
DDN
ai 0.825

0.850

0.875

0.900

0.925

0.950

0.975

te
st

lo
g-

lik
e

dopt

log-like

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 2

time (s)

°0.24

°0.22

°0.20

°0.18

°0.16

°0.14

°0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

°1.1

°1.0

°0.9

°0.8

°0.7

°0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

°1.8

°1.6

°1.4

°1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

°2.4

°2.2

°2.0

°1.8

°1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

0 2

time (s)

°0.24

°0.22

°0.20

°0.18

°0.16

°0.14

°0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

°1.1

°1.0

°0.9

°0.8

°0.7

°0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

°1.8

°1.6

°1.4

°1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

°2.4

°2.2

°2.0

°1.8

°1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0
20

40
60

80
100

0 20 40 60 80

100

d (No. active blocks)

M
N

IST

0
20

40
60

80
100

0 20 40 60 80

100
Fashion-M

N
IST

0
20

40
60

80
100

0 20 40 60 80

100
SV

H
N

DLD
N

-E
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
D

N
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

8 10 12 14 16 18 20

0
20

40
60

80
100

4 5 6 7 8 9 10 11 12
D

D
N

LD
N

-95

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

D
(M

ax
depth)

8 10 12 14 16 18 20

0
25

50
75

100
4 5 6 7 8 9 10 11 12

LD
N

-E
LD

N
-95

LD
N

-full

Figure 3.14: Left: posterior over depths for a LDN of D=50 trained on our spirals dataset.
Test log-likelihoods obtained for DDNs at every depth are overlaid with the log-likelihood value
obtained with a LDN when marginalising over dopt=9 layers. Right: the LDN’s depth, chosen
using (3.10), and test performance remain stable as D increases up until D≈ 50.

that explain the data well obtain large probabilities, regardless of their depth. For
MNIST, the probabilities assigned to each depth in our LDN grow quickly and flatten out
around dopt ≈ 18. For Fashion-MNIST, depth probabilities grow more slowly. We obtain
dopt ≈ 28. For SVHN, probabilities flatten out around dopt ≈ 30. These distributions
and dopt values correlate with dataset complexity. In most cases, LDNs achieve test
log-likelihoods competitive with the best performing DDNs.

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

q a
(d

)

MNIST

LDN
DDN
ai

dopt

0 10 20 30 40 50

d (No. active blocks)

Fashion-MNIST

0 10 20 30 40 50

SVHN

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

lo
g-

lik
e

0 2

time (s)

°0.24

°0.22

°0.20

°0.18

°0.16

°0.14

°0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

°1.1

°1.0

°0.9

°0.8

°0.7

°0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

°1.8

°1.6

°1.4

°1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

°2.4

°2.2

°2.0

°1.8

°1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVHN vs CIFAR10

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs KMNIST

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR100 vs SVHN

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

DUN Ensemble Dropout SGD DUN (exact)

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs MNIST0
20

40
60

80
100

0 20 40 60 80

100

d (No. active blocks)

M
N

IST

0
20

40
60

80
100

0 20 40 60 80

100
Fashion-M

N
IST

0
20

40
60

80
100

0 20 40 60 80

100
SV

H
N

DLD
N

-E
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
D

N
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

8 10 12 14 16 18 20

0
20

40
60

80
100

4 5 6 7 8 9 10 11 12
D

D
N

LD
N

-95

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

D
(M

ax
depth)

8 10 12 14 16 18 20

0
25

50
75

100
4 5 6 7 8 9 10 11 12

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 20 40 60 80

100

d (No. active blocks)

M
N

IST

0
20

40
60

80
100

0 20 40 60 80

100
Fashion-M

N
IST

0
20

40
60

80
100

0 20 40 60 80

100
SV

H
N

DLD
N

-E
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
D

N
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

8 10 12 14 16 18 20

0
20

40
60

80
100

4 5 6 7 8 9 10 11 12
D

D
N

LD
N

-95

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

D
(M

ax
depth)

8 10 12 14 16 18 20

0
25

50
75

100
4 5 6 7 8 9 10 11 12

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 20 40 60 80

100

d (No. active blocks)

M
N

IST

0
20

40
60

80
100

0 20 40 60 80

100
Fashion-M

N
IST

0
20

40
60

80
100

0 20 40 60 80

100
SV

H
N

DLD
N

-E
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
D

N
LD

N
-95

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

test log-like

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
20

40
60

80
100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LD
N

-E
LD

N
-95

LD
N

-full

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

8 10 12 14 16 18 20

0
20

40
60

80
100

4 5 6 7 8 9 10 11 12
D

D
N

LD
N

-95

0
20

40
60

80
100

0 1 2 3 4 5

test error

0
20

40
60

80
100

D
(M

ax
depth)

8 10 12 14 16 18 20

0
25

50
75

100
4 5 6 7 8 9 10 11 12

LD
N

-E
LD

N
-95

LD
N

-full
Figure 3.15: Approximate posterior over depths for LDNs of D = 50 trained on image datasets.
Test log-likelihoods obtained for DDNs at various depths are overlaid with those from our LDNs
when marginalising over the first dopt layers. The depth was chosen using (3.12)



46 Depth Uncertainty in Neural Networks

Figure 3.16 shows more detailed experiments comparing LDNs with DDNs on image
datasets. The first row of the figure adds further evidence that the depth learnt by
DUNs corresponds to dataset complexity. For any maximum depth, and both pruning
approaches, we see that dopt is smaller for MNIST than Fashion-MNIST and likewise
smaller for Fashion-MNIST than SVHN. For MNIST, Fashion-MNIST, and, to a lesser
extent, SVHN, the depth given by the 95th percent pruning tends to saturate. On the
other hand, the expected depth grows with D, making it a less suitable pruning strategy.

As shown in rows 2 to 5, for SVHN and Fashion-MNIST, 95th percentile-pruned
LDNs suffer no loss in predictive performance compared to expected depth-pruned and
even non-pruned LDNs. They outperform DDNs. For MNIST, 95th percent pruning
gives results with high variance and reduced predictive performance in some cases. Here,
DDNs yield better log-likelihood and accuracy results. Expected depth is more resilient
in this case, matching full-depth LDNs and DDNs in terms of accuracy.



3.3 Experiments 47

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVHN vs CIFAR10

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs KMNIST

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR100 vs SVHN

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

DUN Ensemble Dropout SGD DUN (exact)

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs MNIST

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

20

40

60

80

100

d
(N

o.
ac

ti
ve

bl
oc

ks
)

MNIST

0 20 40 60 80 100
0

20

40

60

80

100
Fashion-MNIST

0 20 40 60 80 100
0

20

40

60

80

100
SVHN

D
LDN-E
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

DDN
LDN-95

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

lo
g-

lik
e

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

LDN-E
LDN-95
LDN-full

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

8

10

12

14

16

18

20

0 20 40 60 80 100
4

5

6

7

8

9

10

11

12
DDN
LDN-95

0 20 40 60 80 100
0

1

2

3

4

5

te
st

er
ro

r

0 20 40 60 80 100

D (Max depth)

8

10

12

14

16

18

20

0 25 50 75 100
4

5

6

7

8

9

10

11

12
LDN-E
LDN-95
LDN-full

0 2

time (s)

°0.24

°0.22

°0.20

°0.18

°0.16

°0.14

°0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

°1.1

°1.0

°0.9

°0.8

°0.7

°0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

°1.8

°1.6

°1.4

°1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

°2.4

°2.2

°2.0

°1.8

°1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

0 2

time (s)

°0.24

°0.22

°0.20

°0.18

°0.16

°0.14

°0.12

LL

2

3
5

7 10 15 20

1
2
357 10 15 20

Severity: 0

0 2

time (s)

°1.1

°1.0

°0.9

°0.8

°0.7

°0.6

2

3
5

7 10 15 20

1
23

57 10 15 20

Severity: 2

0 2

time (s)

°1.8

°1.6

°1.4

°1.2

2

3

5
7

10 15 20

1
23

57 10 15 20

Severity: 3

DUN Ensemble Dropout SGD

0 2

time (s)

°2.4

°2.2

°2.0

°1.8

°1.6

2

3

5
7

10
15 20

1
23

57 10 15 20

Severity: 5

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVHN vs CIFAR10

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs KMNIST

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR100 vs SVHN

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

DUN Ensemble Dropout SGD DUN (exact)

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs MNIST

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVHN vs CIFAR10

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs KMNIST

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CIFAR100 vs SVHN

0 25 50 75 100

% rejected

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

DUN Ensemble Dropout SGD DUN (exact)

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

Fashion vs MNIST

Figure 3.16: Comparisons of DDNs and LDNs using different pruning strategies and maximum
depths. LDN-95 and LDN-E refer to the pruning strategies described in (3.12) and (3.11),
respectively. 1st row: comparison of dopt. 2nd row: comparison of test log-likelihoods for DDNs
and LDNs with 95 percent pruning. 3rd row: comparison of test log-likelihoods for LDNs
pruning methods. 4th and 5th rows: as above but for test error.



48 Depth Uncertainty in Neural Networks

3.3.6 DUNs for Active Learning

In the active learning framework, a model is initially trained on a small labelled subset
of the available data, and additional unlabelled points are selected via an acquisition
function to be labelled by an external oracle (e.g., a human expert) (Settles, 2009). Given
a model with parameters θ trained on training data Dtrain = {xi,yi}Ni=1, the acquisition
function α(·) scores all unlabelled examples in the pool set Dpool = {xj}Npool

j=1 . These
scores are used to select the next point x⋆ to be labelled:

x⋆ = argmax
x∈Dpool

αBALD(x; θ, Dtrain). (3.13)

Houlsby et al. (2011) propose an acquisition called Bayesian Active Learning by Disagree-
ment (BALD),

αBALD(x; θ, Dtrain) = H [p (y |x,Dtrain)]− Ep(θ | Dtrain) [H [p (y |x,θ)]] , (3.14)

which selects points for which the predictions of individual parameterisations maximally
disagree—i.e., where there is high uncertainty in the predictive posterior on average—
but the predictions of individual parameter settings are confident. To avoid acquiring
correlated points when performing batch acquisition, we implement a stochastic relaxation
of BALD,

x⋆ ∼ αBALDstoch(x; θ, Dtrain) = softmax (TαBALD(x; θ, Dtrain)) . (3.15)

We use temperature T = 10; see Section A.2.5 for discussion of this choice. Kirsch
et al. (2023) provide extensive analysis showing that such stochastic relaxations are never
worse than their deterministic counterparts, and can even outperform computationally
expensive batch-aware methods.

We perform experiments on eight UCI regression datasets (Hernández-Lobato and
Adams, 2015). The experimental setup is described in Section A.2.5. Experiments are
repeated 40 times, with the mean and standard deviations reported in the figures.

First, we investigate whether DUNs adapt their inferred depth to the size of the
dataset. Figure 3.17 compares the posterior probabilities over depth for DUNs trained
on datasets from the first and final steps of active learning, and illustrates that this does
occur in practice.

We compare the Negative Log Likelihood (NLL) performance of DUNs to MFVI and
Monte Carlo Dropout (MCDO) (Gal and Ghahramani, 2016) in Figure 3.18. The test



3.4 Related Work 49

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

q φ
(d

)

Concrete

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Kin8nm

Train size: 50
Train size: 630

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

Naval

Train size: 50
Train size: 630

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Power

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

q φ
(d

)

Protein

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Energy

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Wine

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Yacht

Train size: 20
Train size: 210

Figure 3.17: DUN depth posteriors for three UCI regression datasets, with the smallest and
largest labelled datasets used during active learning.

NLL for MFVI and MCDO is evaluated using 10 MC samples. DUNs perform either
better than, or comparably to, MCDO, and clearly outperforms MFVI.

200 400 600
Train set size

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

N
L

L

Concrete

DUN
MCDO
MFVI

200 400 600
Train set size

0.8

1.0

1.2

1.4
Kin8nm

200 400 600

0.0

0.5

1.0

1.5
Naval

200 400 600

0.2

0.4

0.6

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

1.45

Te
st

N
L

L

Protein

200 400 600
Train set size

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
Energy

200 400 600
Train set size

1.15

1.20

1.25

1.30

1.35

1.40

Wine

50 100 150 200
Train set size

−1.0

−0.5

0.0

0.5

1.0

Yacht

Figure 3.18: Test NLL vs. number of training points using stochastic BALD acquisition
function evaluated on UCI datasets. DUNs, MCDO and MFVI are compared.

3.4 Related Work

Traditionally, Bayesians tackle overconfidence in deep networks by treating their weights as
random variables. Through marginalisation, uncertainty in weight-space is translated to
predictions. Alas, the weight posterior in Bayesian Neural Networks (BNNs) is intractable.
Hamiltonian Monte Carlo (HMC) (Neal, 1995) is theoretically well-motivated method for
inference in BNNs—with strong asymptotic guarantees—but requires impractically large
compute resources to perform well (Izmailov et al., 2021b). The Laplace approximation



50 Depth Uncertainty in Neural Networks

(MacKay, 1992; Ritter et al., 2018), VI (Hinton and van Camp, 1993; Graves, 2011;
Blundell et al., 2015) and expectation propagation (Hernández-Lobato and Adams, 2015)
have all been proposed as alternatives. More recent methods are scalable to large models
(Khan et al., 2018; Osawa et al., 2019; Dusenberry et al., 2020a). Gal and Ghahramani
(2016) re-interpret dropout as VI, dubbing it MC Dropout. Other stochastic regularisation
techniques can also be viewed in this light (Kingma et al., 2015; Gal, 2016; Teye et al.,
2018). These can be seamlessly applied to vanilla NNs. In addition to the intractability
of the weight posterior, it is not clear how to place reasonable priors over NNs weights
(Wenzel et al., 2020a). DUNs avoid these issues by targeting depth. BNN inference can
also be performed directly in function space (Sun et al., 2019; Hafner et al., 2019; Ma
et al., 2019; Wang et al., 2019). However, this requires crude approximations to the KLD
between stochastic processes.

Deep ensembles provide a non-Bayesian method for uncertainty estimation in NNs that
trains multiple independent networks and aggregates their predictions (Lakshminarayanan
et al., 2017). Ensembling trades off strong results for high computational cost. Huang
et al. (2017), Garipov et al. (2018), and Maddox et al. (2019) reduce the cost of training
an ensemble by leveraging different weight configurations found in a single SGD trajectory.
However, this comes at the cost of reduced predictive performance (Ashukha et al., 2020).
Similarly to deep ensembles, DUNs combine the predictions from a set of deep models.
However, this set stems from treating depth as a random variable. Unlike ensembles, BMA
assumes the existence of a single correct model (Minka, 2000). In DUNs, uncertainty
arises due to a lack of knowledge about how deep the correct model is. It is worth noting
that deep ensembles can also be interpreted as approximate BMA (Wilson, 2020).

All of the above methods, except DUNs, require multiple forward passes to produce
uncertainty estimates. This is problematic in low-latency settings or those in which
computational resources are limited. Postels et al. (2019) use error propagation to
approximate the dropout predictive posterior with a single forward pass. Although
efficient, this approach shares pathologies with MC Dropout.

There is a rich literature on probabilistic inference for NN structure selection, starting
with the automatic relevance detection prior (MacKay, 1994). Since then, several
approaches have been introduced (Ghosh et al., 2019; Dikov and Bayer, 2019; Lawrence,
2001b). Perhaps the closest to our work is the automatic depth determination prior
(Nalisnick et al., 2019a). Huang et al. (2016) stochastically drop layers as a ResNet training
regularisation approach. Conversely, DUNs perform marginalisation over architectures,
translating depth uncertainty into uncertainty over functional complexities.



3.5 Summary 51

3.5 Summary

We have recast NN depth as a random variable. This treatment allows us to optimise
weights as model hyperparameters, preserving much of the simplicity of non-Bayesian
NNs. Critically, both the model evidence and predictive posterior for DUNs can be
evaluated with a single forward pass. Our experiments show that DUNs produce well-
calibrated uncertainty estimates, performing well relative to their computational budget
on uncertainty-aware tasks.

In this chapter, we have investigated uncertainty estimation in NNs by avoiding the
challenges of inference in weight space and instead inferring depth. In the next chapter,
we will switch gears and instead consider a method for tractable inference in weight
space.





Chapter 4

Bayesian Deep Learning via
Subnetwork Inference

In this chapter, we introduce subnetwork inference, a method for scalable Bayesian deep
learning. Our contributions are:

1. In Section 4.2, we describe a general framework for scalable Bayesian deep learning
in which inference is performed over only a small subset of the NN weights, while
all other weights are kept deterministic. This allows us to use expressive posterior
approximations that are typically intractable in large NNs. This framework is
summarised in Figure 4.1.

2. After discussing the linearised Laplace algorithm in Section 4.3, we describe how
to apply subnetwork inference to the linearised Laplace posterior in Section 4.4.
Concretely, we first fit a MAP estimate of the full NN, and then use the lin-
earised Laplace approximation to infer a full-covariance Gaussian posterior over a
subnetwork.

3. In Section 4.5, we derive a subnetwork selection strategy based on the Wasserstein
distance between the approximate posterior for the full network and the approximate
posterior for the subnetwork. For scalability, we employ a diagonal approximation
during subnetwork selection. Selecting a small subnetwork then allows us to
infer weight covariances. Empirically, we find that making approximations during
subnetwork selection is much less harmful to uncertainty estimation using posterior
predictive than making them during inference.

4. We empirically evaluate our method on a range of benchmarks for uncertainty
calibration and robustness to distribution shift, in Section 4.6. Our experiments



54 Bayesian Deep Learning via Subnetwork Inference

demonstrate that expressive subnetwork inference can outperform popular Bayesian
deep learning methods that do less expressive inference over the full NN as well as
deep ensembles.

This chapter is based on the paper “Bayesian Deep Learning via Subnetwork Inference”
(Daxberger et al., 2021b). This paper was written in collaboration with Erik Daxberger,
Javier Antorán, Eric Nalisnick and José Miguel Hernández-Lobato. The original idea
for the project was due to Erik. I was heavily involved with all aspects of the project,
taking equal responsibility with Erik and Javier for conceptualisation, exploration, coding,
derivations, evaluation, and presentation of the results, as well as writing the paper. Eric
and Miguel provided guidance and high-level input throughout the projects, with Eric
also being very involved with the initial ideation and several derivations.

4.1 Motivation

A critical shortcoming of deep NNs is that they tend to be poorly calibrated and
overconfident in their predictions, especially when there is a shift between the train and
test data distributions (Nguyen et al., 2015; Guo et al., 2017). To reliably inform decision
making, NNs need to robustly quantify the uncertainty in their predictions (Bhatt et al.,
2021). This is especially important for safety-critical applications such as healthcare or
autonomous driving (Amodei et al., 2016).

Bayesian modelling (Bishop, 2006; Ghahramani, 2015) presents a principled way to
capture uncertainty via the posterior distribution over model parameters. Unfortunately,
exact posterior inference is intractable in NNs. Despite continued interest in the field of
Bayesian deep learning (see Section 2.1.2), existing methods invoke unrealistic assumptions
to scale to NNs with large numbers of weights. For example, Osawa et al. (2019) scale
Bayesian Neural Networks (BNNs) to ImageNet classification, but rely on the strong
mean-field approximation. Such approximations severely limit the expressiveness of the
inferred posterior and thus deteriorate the quality of the induced uncertainty estimates
(Ovadia et al., 2019; Fort et al., 2019; Foong et al., 2020).

Perhaps these unrealistic inference approximations can be avoided. Due to the heavy
overparameterisation of NNs, their accuracy is well-preserved by a small subnetwork
(Cheng et al., 2017). Moreover, doing inference over a low-dimensional subspace of the
weights can result in accurate uncertainty quantification (Izmailov et al., 2019). This
prompts the following question: Can a full NN’s model uncertainty be well-preserved
by a small subnetwork? In this chapter, we demonstrate that the posterior predictive
distribution of a full network can be well represented by that of a subnetwork.



4.2 Subnetwork Posterior Approximation 55

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(a) Point Estimation

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(b) Subnet. Selection

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(c) Bayesian Inference

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(d) Prediction

Figure 4.1: Schematic illustration of our proposed approach. (a) We train a neural network
using standard techniques to obtain a point estimate of the weights. (b) We identify a small
subset of the weights. (c) We estimate a posterior distribution over the selected subnetwork via
Bayesian inference techniques. (d) We make predictions using the full network with a mix of
Bayesian and deterministic weights.

4.2 Subnetwork Posterior Approximation

Let w ∈ RD be the D-dimensional vector of all neural network weights (i.e., the
concatenation and flattening of all layers’ weight matrices). BNNs aim to capture model
uncertainty, i.e., uncertainty about the choice of weights w arising due to multiple
plausible explanations of the training data D = {y,X}. Here, y ∈ RO is the output
variable (e.g., classification label) and X ∈ RN×I is the feature matrix. First, a prior
distribution p (w) is specified over the BNN’s weights w. We then wish to infer their full
posterior distribution

p (w | D) = p (w |y, X) ∝ p (y |X, w)p (w). (4.1)

Finally, predictions for new data points X∗ are made through marginalisation of the
posterior:

p (y∗ |X∗, D) =
∫
w

p (y∗ |X∗, w)p (w | D)dw. (4.2)

This posterior predictive distribution translates uncertainty in weights to uncertainty in
predictions. Unfortunately, due to the non-linearity of NNs, it is intractable to infer the
exact posterior distribution p (w | D). It is even computationally challenging to faithfully
approximate the posterior due to the high dimensionality of w. Thus, crude posterior
approximations such as complete factorization, i.e., p (w | D) ≈ ∏D

d=1 q (wd) where wd

is the dth weight in w, are commonly employed (Hernández-Lobato and Adams, 2015;



56 Bayesian Deep Learning via Subnetwork Inference

Blundell et al., 2015; Khan et al., 2018; Osawa et al., 2019). However, it has been shown
that such an approximation suffers from severe pathologies (Foong et al., 2019, 2020).

In this chapter, we question the widespread implicit assumption that an expressive
posterior approximation must include all D of the model weights to make predictions
with well-calibrated uncertainty estimates. Instead, we try to perform inference only
over a small subset of S ≪ D of the weights. The following arguments motivate this
approach:

1. Overparameterisation: Maddox et al. (2020) have shown that, in the neighbour-
hood of local optima, there are many directions that leave the NN’s predictions
unchanged. Moreover, NNs can be heavily pruned without sacrificing test-set
accuracy (Frankle and Carbin, 2019). This suggests that the majority of a NN’s
predictive power can be isolated to a small subnetwork.

2. Inference over submodels: Previous work1 has provided evidence that inference
can be effective even when not performed on the full parameter space. Examples
include Izmailov et al. (2019) and Snoek et al. (2015), who perform inference
over low-dimensional projections of the weights, and only the last layer of a NN,
respectively.

We therefore combine these two ideas and make the following two-step approximation of
the posterior in (4.1):

p (w | D) = p (wS | D, wR)p (wR | D) (4.3)

≈ p (wS | D, wR)
∏
r

δ (wr − ŵr) (4.4)

≈ q (wS)
∏
r

δ (wr − ŵr) = qS (w). (4.5)

We first decompose the full NN posterior p (w | D) into a posterior p (wS | D, wR) over the
subnetwork wS ∈ RS and a posterior p (wR | D) over the remaining weights wR ∈ RD−S.
The first approximation (4.4) replaces the later with Dirac delta functions δ (wr − ŵr)

to keep wr at fixed values ŵr. Since posterior inference over the subnetwork is still
intractable, (4.5) further approximates p (wS | D, wR) by q (wS). However, importantly,
if the subnetwork is much smaller than the full network, we can afford to make q (wS)

more expressive than would otherwise be possible. We hypothesise that being able to
capture rich dependencies across the weights within the subnetwork will provide better
results than crude approximations applied to the full set of weights.

1See Section 4.8 for a more thorough discussion of related work.



4.3 Background: Linearised Laplace 57

Relationship to Weight Pruning Methods. Note that the posterior approxima-
tion in (4.5) can be viewed as pruning the variances of the weights {wr}r to zero. This
is in contrast to weight pruning methods2 that set the weights themselves to zero. I.e.,
weight pruning methods can be viewed as removing weights to preserve the predictive
mean (i.e., to retain accuracy close to the full model). In contrast, subnetwork inference
can be viewed as removing just the variances of certain weights—while keeping their
means—to preserve the predictive uncertainty (e.g., to retain calibration close to the
full model). Thus, they are complementary approaches. Importantly, by not pruning
weights, subnetwork inference retains the full predictive power of the full NN to retain
its predictive accuracy.

4.3 Background: Linearised Laplace

In this chapter, we satisfy (4.5) by approximating the posterior distribution over the
weights with the linearised Laplace approximation (MacKay, 1992). This is an inference
technique that has recently been shown to perform strongly (Foong et al., 2019; Immer
et al., 2021b) and can be applied post-hoc to pre-trained models. We now describe it in
a general setting.

We denote our NN function as f : RI → RO. We begin by defining a prior over our
NN’s weights, which we choose to be a fully factorised Gaussian p (w) = N

(
w
∣∣∣0, λ−1 · I).

We find a local optimum of the posterior, also known as a MAP setting of the weights:

ŵ = argmax
w

[log p (y |X, w) + log p (w)] . (4.6)

The posterior is then approximated with a second-order Taylor expansion around the
MAP estimate:

log p (w | D) ≈ log p (ŵ | D)− 1

2
(w − ŵ)⊤H(w − ŵ) (4.7)

where H ∈ RD×D is the Hessian of the negative log-posterior density with respect to the
network weights w:

H = N · ED

[
− ∂2

∂w2
log p (y |X, w)

]
+ λ · I . (4.8)

2See Cheng et al. (2017) for a review.



58 Bayesian Deep Learning via Subnetwork Inference

Thus, the approximate posterior takes the form of a full-covariance Gaussian with
covariance matrix H−1:

p (w | D) ≈ q (w) = N
(
w
∣∣∣ ŵ, H−1). (4.9)

In practise, the Hessian H is commonly replaced with the Generalized Gauss-Newton
(GGN) matrix (Martens and Sutskever, 2011; Martens, 2020, 2016):

H̃ =
N∑

n=1

J⊤
nHnJn + λ · I ∈ RD×D. (4.10)

Where,

Jn =
∂f(xn,w)

∂w
∈ RO×D (4.11)

is the Jacobian of the model outputs f(xn,w) ∈ RO with respect to w, and

Hn = −∂2 log p (y |f(xn,w))

∂2f(xn,w)
∈ RO×O (4.12)

is the Hessian of the negative Log Likelihood (LL) with respect to the model outputs.
Interestingly, when using a Gaussian likelihood, the Gaussian with a GGN precision

matrix corresponds to the true posterior distribution when the NN is approximated with
a first-order Taylor expansion around ŵ (Khan et al., 2019; Immer et al., 2021b). The
locally linearised function is

flin(x,w) = f(x, ŵ) + Ĵ(x)(w − ŵ), (4.13)

where

Ĵ(x) =
∂f(x, ŵ)

∂ŵ
∈ RO×D. (4.14)

This turns the underlying probabilistic model from a BNN into a Generalized Linear
Model (GLM), where the Jacobian Ĵ(x) acts as a basis function expansion. Making
predictions with the GLM flin has been found to outperform the corresponding BNN
f with the GGN-Laplace posterior (Lawrence, 2001a; Foong et al., 2019; Immer et al.,
2021b). Additionally, the equivalence between a GLM and a linearised BNN will help us
to derive a subnetwork selection strategy in Section 4.5.



4.4 Linearised Laplace Subnetwork Inference 59

The resulting posterior predictive distribution is

p (y∗ |x∗, D) =
∫

p (y∗ |flin(x
∗,w))p (w | D)dw. (4.15)

For regression—with a Gaussian likelihood p (y∗ |flin(x
∗,w)) = N (y∗ |flin(x

∗,w), σ2)—
our approximate distribution becomes exact q (w) = p (w | D) = N

(
w
∣∣∣ ŵ, H̃−1). We

obtain the closed-form predictive

p (y∗ |x∗, D) = N
(
y∗ ∣∣f(x∗, ŵ), Σ(x∗) + σ2 · I

)
, (4.16)

where Σ(x∗) = Ĵ(x∗)⊤H̃−1Ĵ(x∗). For classification—with a categorical likelihood
p (y∗ |flin(x

∗,w)) = Cat (y∗ |ϕ(flin(x
∗,w))—the posterior is strictly convex. This justi-

fies our choice of approximating a strictly convex distribution by a Gaussian that is also
strictly convex. Here, ϕ(·) refers to the softmax function. The predictive integral has no
analytical solution. Instead we leverage the probit approximation (Gibbs, 1998; Bishop,
2006):

p (y∗ |x∗, D) ≈ Cat

(
y∗

∣∣∣∣∣ϕ
(

f(x∗, ŵ)√
1+π

8
diag(Σ(x∗))

))
. (4.17)

These closed-form expressions are attractive since they result in the predictive mean and
classification boundaries being exactly equal to those of the MAP estimated NN.

Unfortunately, storing the full D×D covariance matrix over the weight space of a
modern NN (i.e., with very large D) is computationally intractable. There have been
efforts to develop cheaper approximations to this object, such as only storing diagonal
(Denker and LeCun, 1990) or block diagonal (Ritter et al., 2018; Immer et al., 2021b)
entries, but these, like any approximation, come at the cost of reduced uncertainty
calibration in the predictive posterior.

4.4 Linearised Laplace Subnetwork Inference

We outline the following procedure for scaling the linearised Laplace approximation to
large neural network models within the framework of subnetwork inference.

Step #1: Point Estimation, Figure 4.1 (a). Train a neural network to obtain a
point estimate of the weights, denoted ŵ. This can be done using stochastic gradient-



60 Bayesian Deep Learning via Subnetwork Inference

based optimisation methods (Goodfellow et al., 2016). Alternatively, we could make use
of a pre-trained model.

Step #2: Subnetwork Selection, Figure 4.1 (b). Identify a small subnetwork
wS ∈ RS, S ≪ D. Ideally, we would like to find the subnetwork that produces a predictive
posterior ‘closest’ to the full network’s predictive distribution. Regrettably, reasoning in
the space of functions directly is challenging (Burt et al., 2021). Instead, in Section 4.5,
we describe a strategy that minimises the Wasserstein distance between the sub- and
full-network’s weight posteriors.

Step #3: Bayesian Inference, Figure 4.1 (c). Use the GGN-Laplace approximation
to infer a full-covariance Gaussian posterior over the subnetwork’s weights wS ∈ RS:

p (wS | D, wR) ≈ q (wS) = N
(
wS

∣∣∣ ŵS, H̃
−1
S

)
(4.18)

where H̃S ∈ RS×S is the GGN with respect to the weights wS:

H̃S =
N∑

n=1

J⊤
SnHnJSn + λS · I. (4.19)

Here, JSn = ∂f(xn,wS)/∂wS ∈ RO×S is the Jacobian with respect to wS. Hn is defined
as in Section 4.2. In order to best preserve the magnitude of the predictive variance,
we update our prior precision to be λS = λ · S/D (see Section B.1 for more details). All
weights not belonging to the chosen subnetwork are fixed at their MAP values. Note that
this whole procedure (i.e., Steps #1–#3) is a perfectly valid mixed inference strategy:
We perform full Laplace inference over the selected subnetwork and MAP inference over
all remaining weights. The resulting approximate posterior (4.5) is

qS(w)
(4.18)
= N

(
wS

∣∣∣ ŵS, H̃
−1
S

)∏
r

δ (wr − ŵr). (4.20)

Given a sufficiently small subnetwork wS, it is feasible to store and invert H̃S. In
particular, naively storing and inverting the full GGN H̃ scales as O(D2) and O(D3),
respectively. Using the subnetwork GGN H̃S instead reduces this burden to O(S2) and
O(S3), respectively. In our experiments, S ≪ D with our subnetworks representing less
than 1% of the total weights. Note that quadratic/cubic scaling in S is unavoidable if we
are to capture weight correlations.



4.5 Subnetwork Selection 61

Step #4: Prediction, Figure 4.1 (d). Perform a local linearisation of the NN (see
Section 4.3) while fixing wr to ŵr:

flin(x,wS) = f(x, ŵ) + ĴS(x)(wS − ŵS) , (4.21)

where ĴS(x) = ∂f(x, ŵS)/∂ŵS∈RO×S. Following (4.16) and (4.17), the corresponding
predictive distributions are

p (y∗ |x∗, D) = N
(
y∗ ∣∣f(x∗, ŵ), ΣS(x

∗) + σ2 · I
)

(4.22)

for regression and

p (y∗ |x∗, D) ≈ softmax

(
f(x∗, ŵ)√

1+π
8
diag(ΣS(x∗))

)
(4.23)

for classification, where Σ(x∗) in (4.16) and (4.17) is substituted with ΣS(x
∗) =

ĴS(x
∗)T H̃−1

S ĴS(x
∗).

4.5 Subnetwork Selection

Ideally, we would like to choose a subnetwork such that the induced predictive posterior
distribution is as close as possible to the predictive posterior provided by inference over
the full network (4.15). This discrepancy between stochastic processes is often quantified
through the functional Kullback-Leibler Divergence (KLD) (Sun et al., 2019; Burt et al.,
2021):

sup
n∈N,X∗∈Xn

DKL [pS (y
∗ |X∗, D) || p (y∗ |X∗, D)] , (4.24)

where pS denotes the subnetwork predictive posterior and X n denotes a finite measurement
set of n elements. Regrettably, reasoning directly in function space is a difficult task
(Nalisnick and Smyth, 2018; Pearce et al., 2019; Sun et al., 2019; Antorán et al., 2020;
Nalisnick et al., 2021; Burt et al., 2021). Instead, we focus our attention on weight space.

In weight space, our aim is to minimise the discrepancy between the exact posterior
over the full network (4.1) and the subnetwork approximate posterior (4.5). This provides
two challenges. Firstly, computing the exact posterior distribution remains intractable.
Secondly, common discrepancies, like the KLD or the Hellinger distance, are not useful



62 Bayesian Deep Learning via Subnetwork Inference

due to the Dirac delta distributions found in (4.5), which result in infinite penalties that
do not allow us to distinguish between good and bad choices of the subnetwork.

To solve the first issue, we again resort to local linearisation, introduced in Section 4.3.
The true posterior for the linearised model is Gaussian or approximately Gaussian3:

p (w | D) ≃ N
(
w
∣∣∣ ŵ, H̃−1). (4.25)

We solve the second issue by choosing the squared 2-Wasserstein distance, which for
two Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2), has the following closed-form
expression (Givens et al., 1984)4:

W2 (N (µ1, Σ1), N (µ2, Σ2))
2 = ∥µ1 − µ2∥22 + Tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2
)
.

(4.26)
In this case, both distributions have the same mean: µ1 = µ2 = ŵ. The true posterior’s
covariance matrix is the inverse GGN matrix, i.e., Σ1 = H̃−1. For the approximate
posterior Σ2 = H̃−1

S+, which is equal to H̃−1
S (the inverse GGN matrix of the subnetwork)

padded with zeros at the positions corresponding to point estimated weights wr, matching
the shape of H̃−1. Alternatively, but equivalently, we can define H̃−1

S+ = MS ⊙ H̃−1,
where ⊙ is the Hadamard product, and MS is a mask matrix with zeros in the rows and
columns corresponding to wr, i.e., the rows and columns corresponding to weights not
included in the subnetwork. Thus, for the case of a full covariance Gaussian (4.25) and
a product of a full covariance Gaussian with Dirac deltas (4.20), this metric takes the
following form:

W2 (p (w | D), qS (w))2 (4.27)

= W2

(
N
(
ŵ, H̃−1), N(ŵ, H̃−1

S+

))2
(4.28)

=������∥ŵ − ŵ∥22 + Tr
(
H̃−1 + H̃−1

S+ − 2
(
H̃
−1/2
S+ H̃−1H̃−1/2

S+

)1/2
)

(4.29)

= Tr
(
H̃−1 + H̃−1

S+ − 2
(
H̃
−1/2
S+ H̃−1H̃−1/2

S+

)1/2
)

. (4.30)

Finding the subset wS ∈ RS of size S that minimises (4.30) would be combinatorially
difficult, as the contribution of each weight depends on every other weight. To address this
issue, we make an independence assumption among weights, i.e., H̃−1 = diag(σ2

1, . . . , σ
2
D),

3When not making predictions with the linearised model, the Gaussian posterior would represent a
crude approximation.

4This also holds for our case of a degenerate Gaussian with singular covariance matrix.



4.6 Experiments 63

resulting in the simplified objective

W2 (p (w | D), qS (w))2 (4.31)

≈ Tr
(
H̃−1)+ Tr

(
H̃−1

S+

)
− 2Tr

(
H̃−1/2H̃−1/2

S+

)
(4.32)

=
D∑

d=1

σ2
d +mdσ

2
d − 2mdσ

2
d (4.33)

=
D∑

d=1

σ2
d(1−md) , (4.34)

where md is the dth element of diag(MS), i.e., md = 1 if wd ∈ wS and 0 otherwise.
The objective (4.31) is trivially minimised by a subnetwork containing the S weights
with the highest variances. This is related to common magnitude-based weight pruning
methods (Cheng et al., 2017). The main difference is that our selection strategy involves
weight variances rather than magnitudes as we target predictive uncertainty rather than
accuracy.

In practice, even computing the marginal variances (i.e., the diagonal of H̃−1) is
intractable, as it requires storing and inverting the GGN H̃. However, we can approximate
posterior marginal variances with the diagonal Laplace approximation diag(H̃−1) ≈
diag(H̃)−1 (Denker and LeCun, 1990; Kirkpatrick et al., 2017), diagonal Stochastic Weight
Averaging Gaussian (SWAG) (Maddox et al., 2019), or even Mean-Field Variational
Inference (MFVI) (Blundell et al., 2015; Osawa et al., 2019). In this chapter, we rely on
the former two, as the latter involves larger overhead.

It may seem that we have resorted to the poorly performing diagonal assumptions
that we sought to avoid in the first place (Ovadia et al., 2019; Foong et al., 2020; Ashukha
et al., 2020). However, there is a key difference. We make the diagonal assumption during
subnetwork selection rather than inference; we do full covariance inference over wS. In
Section 4.6, we provide evidence that making a diagonal assumption during subnetwork
selection is reasonable by showing that 1) it is substantially less harmful to predictive
performance than making the same assumption during inference, and 2) it outperforms
random subnetwork selection.

4.6 Experiments

We empirically assess the effectiveness of subnetwork inference compared to methods
that do less expressive inference over the full network as well as state-of-the-art methods



64 Bayesian Deep Learning via Subnetwork Inference

for uncertainty quantification in deep learning. We consider three benchmark settings:
1) small-scale toy regression, 2) medium-scale tabular regression, and 3) image classifi-
cation with ResNet-18. Further experimental results and setup details are presented in
Section B.2, respectively.

4.6.1 How does Subnetwork Inference preserve Posterior Predic-
tive Uncertainty?

°2

0

2

Full Cov (2600) Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)

°2 0 2

°2

0

2

Diag (2600)

°2 0 2

Rand 50% (1300)

°2 0 2

Rand 3% (78)

°2 0 2

Rand 1% (26)

°2 0 2

Final layer (50)

°2

0

2

Full Cov (2600) Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)

°2 0 2

°2

0

2

Diag (2600)

°2 0 2

Rand 50% (1300)

°2 0 2

Rand 3% (78)

°2 0 2

Rand 1% (26)

°2 0 2

Final layer (50)

°2

0

2

Full Cov (2600) Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)

°2 0 2

°2

0

2

Diag (2600)

°2 0 2

Rand 50% (1300)

°2 0 2

Rand 3% (78)

°2 0 2

Rand 1% (26)

°2 0 2

Final layer (50)

Figure 4.2: Predictive distributions (mean ± std. dev.) for 1D regression. The numbers in
parentheses denote the number of parameters over which inference was done (out of 2600 total).
The blue box highlights subnetwork inference using Wasserstein (top) and random (bottom)
subnetwork selection. Wasserstein subnetwork inference maintains richer predictive uncertainties
at smaller parameter counts.

We first assess how the predictive distribution of a full-covariance Gaussian posterior
over a selected subnetwork qualitatively compares to that obtained from 1) a full-
covariance Gaussian over the full network (Full Cov), 2) a factorised Gaussian posterior
over the full network (Diag), 3) a full-covariance Gaussian over only the (Final layer)
of the network (Snoek et al., 2015), and 4) a point estimate (MAP). For subnetwork
inference, we consider both Wasserstein (Wass) (as described in Section 4.5) and uniform
random subnetwork selection (Rand) to obtain subnetworks that comprise only 50%, 3%,
and 1% of the model parameters. For this toy example, it is tractable to compute exact
posterior marginal variances to guide subnetwork selection.

Our NN consists of 2 ReLU hidden layers with 50 hidden units each. We employ a
homoscedastic Gaussian likelihood function where the noise variance is optimised with
maximum likelihood. We use GGN-Laplace inference over network weights (not biases)



4.6 Experiments 65

in combination with the linearised predictive distribution in (4.22). Thus, all approaches
considered share their predictive mean, allowing better comparison of their uncertainty
estimates. We set the full network prior precision to λ = 3 (a value which we find to
work well empirically) and set λS = λ · S/D.

We use a synthetic 1D regression task with two separated clusters of inputs (Antorán
et al., 2020), allowing us to probe for ‘in-between’ uncertainty (Foong et al., 2019).
Results are shown in Figure 4.2. Subnetwork inference preserves more of the uncertainty
of full network inference than diagonal Gaussian or final layer inference while doing
inference over fewer weights. By capturing weight correlations, subnetwork inference
retains uncertainty in between clusters of data. This is true for both random and
Wasserstein subnetwork selection. However, the latter preserves more uncertainty with
smaller subnetworks. Finally, the strong superiority over diagonal Laplace shows that
making a diagonal assumption for subnetwork selection but then using a full-covariance
Gaussian for inference (as we do) performs significantly better than making a diagonal
assumption for the inferred posterior directly (cf. Section 4.5). These results suggest
that expressive inference over a carefully selected subnetwork retains more
predictive uncertainty than crude approximations over the full network.

4.6.2 Subnetwork Inference in Large Models vs Full Inference
over Small Models

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

−0.970

−0.965

LL

wine

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

wine-gap

0 450 900 2950 10900

posterior dim

0.8

0.9

1.0

1.1

kin8nm

0 450 900 2950 10900

posterior dim

0.7

0.8

0.9

1.0

kin8nm-gap

0 500 1000 3000 11000

posterior dim

−2.950

−2.925

−2.900

−2.875

−2.850

−2.825

−2.800

protein

0 500 1000 3000 11000

posterior dim

−3.175

−3.150

−3.125

−3.100

−3.075

−3.050

protein-gap

wi :50, hi :1 wi :100, hi :1 wi :50, hi :2 wi :100, hi :2

Figure 4.3: Mean test LL values obtained on UCI datasets across all splits. Different markers
indicate models with different numbers of weights. The horizontal axis indicates the number of
weights over which full covariance inference is performed. 0 corresponds to MAP parameter
estimation, and the rightmost setting for each marker corresponds to full network inference.

Secondly, we study how subnetwork inference in larger NNs compares to full network
inference in smaller ones. We explore this by considering 4 fully connected NNs of
increasing size. These have numbers of hidden layers hd = {1, 2} and hidden layer widths
wd = {50, 100}. For a dataset with input dimension id, the number of weights is given



66 Bayesian Deep Learning via Subnetwork Inference

by D = (id + 1)wd + (hd − 1)w2
d. Our 2 hidden layer, 100 hidden unit NNs have a

weight count of the order 104. Full covariance inference in these NNs borders the limit of
computational tractability on commercial hardware. We first obtain a MAP estimate
of each NN’s weights and our homoscedastic likelihood function’s noise variance. We
then perform full network GGN-Laplace inference for each NN. We also use our proposed
Wasserstein rule to prune every NN’s weight variances such that the number of variances
that remain matches the size of every smaller NN under consideration. We employ
the diagonal Laplace approximation to cheaply estimate posterior marginal variances
for subnetwork selection. We employ the linearisation in (4.16) and (4.22) to compute
predictive distributions. Consequently, NNs with the same number of weights make the
same mean predictions. Increasing the number of weight variances considered will thus
only increase predictive uncertainty.

We employ 3 tabular datasets of increasing size (input dimensionality, n. points):
wine (11, 1439), kin8nm (8, 7373), and protein (9, 41157). We consider their standard
train-test splits (Hernández-Lobato and Adams, 2015) and their gap variants (Foong
et al., 2019), designed to test for out-of-distribution uncertainty. Details are provided in
Section B.2.4. For each split, we set aside 15% of the train data as a validation set. We
use these for early stopping when finding MAP estimates and for selecting the weights’
prior precision. We keep other hyperparameters fixed across all models and datasets.
Results are shown in Figure 4.3.

We present mean test LL values, as these take into account both accuracy and
uncertainty. Larger (wd = 100, hd = 2) models tend to perform best when combined with
full network inference, although Wine-gap and Protein-gap are exceptions. Interestingly,
these larger models are still best when we perform inference over subnetworks of the size
of smaller models. We conjecture this is due to an abundance of degenerate directions (i.e.,
weights) in the weight posterior NN models (Maddox et al., 2020). Full network inference
in small models captures information about both useful and non-useful weights. In larger
models, our subnetwork selection strategy allows us to dedicate a larger proportion of
our resources to modelling informative weight variances and covariances. In 3 out of 6
datasets, we find abrupt increases in LL as we increase the number of weights over which
we perform inference, followed by a plateau. Such plateaus might be explained by most
of the informative weight variances having already been accounted for. Considering that
the cost of computing the GGN dominates that of NN training, these results suggest
that, given the same amount of compute, it is better to perform subnetwork
inference in larger models than full network inference in small ones.



4.6 Experiments 67

4.6.3 Image Classification under Distribution Shift

We now assess the robustness of large convolutional neural networks with subnetwork
inference to distribution shift on image classification tasks compared to the following
baselines: point-estimated networks (MAP), Bayesian deep learning methods that do
less expressive inference over the full network: Monte Carlo (MC) Dropout (Gal and
Ghahramani, 2016), diagonal Laplace, Variational Online Gauss-Newton (VOGN) (Osawa
et al., 2019) (all of which assume factorisation of the weight posterior), and SWAG
(Maddox et al., 2019) (which assumes a diagonal plus low-rank posterior). We also
benchmark deep ensembles (Lakshminarayanan et al., 2017). The latter is considered
state-of-the-art for uncertainty quantification in deep learning (Ovadia et al., 2019;
Ashukha et al., 2020). We use ensembles of 5 NNs, as suggested by (Ovadia et al.,
2019), and 16 samples for MC Dropout, diagonal Laplace, and SWAG. We use a Dropout
probability of 0.1 and a prior precision of λ = 4× 104 for diagonal Laplace, found via grid
search. We apply all approaches to ResNet-18 (He et al., 2016a), which is composed of an
input convolutional block, 8 residual blocks, and a linear layer, for a total of 11,168,000
parameters.

For subnetwork inference, we compute the linearised predictive distribution in (4.23).
We use Wasserstein subnetwork selection to retain only 0.38% of the weights, yielding a
subnetwork with only 42,438 weights. This is the largest subnetwork for which we can
tractably compute a full covariance matrix. Its size is 42, 4382 × 4 Bytes ≈ 7.2 GB. We
use diagonal SWAG (Maddox et al., 2019) to estimate the marginal weight variances
needed for subnetwork selection. We tried diagonal Laplace but found that the selected
weights were those where the Jacobian of the NN evaluated at the train points was always
zero (i.e., dead ReLUs). The posterior variance of these weights is large, as it matches
the prior. However, these weights have little effect on the NN function. SWAG does not
suffer from this problem as it disregards weights with zero training gradients. We use a
prior precision of λ = 500, found via grid search.

To assess to importance of principled subnetwork selection, we also consider the
baseline where we select the subnetwork uniformly at random (called Ours (Rand)). We
perform the following two experiments, with results in Figure 4.4.

Rotated MNIST: Following Ovadia et al. (2019); Antorán et al. (2020), we train all
methods on MNIST and evaluate their predictive distributions on increasingly rotated
digits. While all methods perform well on the original MNIST test set, their accuracy
degrades quickly for rotations larger than 30 degrees. In terms of LL, ensembles perform
best out of our baselines. Subnetwork inference obtains significantly larger LL values
than almost all baselines, including ensembles. The only exception is VOGN, which



68 Bayesian Deep Learning via Subnetwork Inference

0.0

0.2

0.4

0.6

0.8

er
ro

r
Rotated MNIST

Ours
Diag-Lap
Dropout
Ours (Rand)

Ensemble
MAP
SWAG
VOGN

0.1

0.2

0.3

0.4

0.5

Corrupted CIFAR10

−8

−6

−4

−2

0

LL

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EC
E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 30 60 90 120 150 180

rotation (◦)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

br
ie

r
sc

or
e

0 1 2 3 4 5

corruption

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: Results on the rotated MNIST (left) and the corrupted CIFAR (right) benchmarks,
showing the mean ± std. dev. of the error, LL, Expected Calibration Error (ECE), and
Brier score (top-to-bottom) across three different seeds. Subnetwork inference retains better
uncertainty calibration and robustness to distribution shift than point-estimated networks and
other Bayesian deep learning approaches.



4.6 Experiments 69

achieves slightly better performance. It was also observed in Ovadia et al. (2019) that
MFVI (which VOGN is an instance of) is very strong on MNIST, but its performance
deteriorates on larger datasets. Subnetwork inference makes accurate predictions in-
distribution while assigning higher uncertainty than the baselines to out-of-distribution
points.

Corrupted CIFAR: Again following Ovadia et al. (2019); Antorán et al. (2020),
we train on CIFAR10 and evaluate on data subject to 16 different corruptions with
5 levels of intensity each (Hendrycks and Dietterich, 2019). Our approach matches a
MAP estimated network in terms of predictive error, as local linearization makes their
predictions the same. Ensembles and SWAG are the most accurate. Even so, subnetwork
inference differentiates itself by being the least overconfident, outperforming all baselines
in terms of LL at all corruption levels. Here, VOGN performs rather badly; while this
might appear to contrast with its strong performance on the MNIST benchmark, the
behaviour that MFVI performs well on MNIST but poorly on larger datasets was also
observed in Ovadia et al. (2019).

Furthermore, on both benchmarks, we find that randomly selecting the subnetwork
performs substantially worse than using our more sophisticated Wasserstein subnetwork
selection strategy. This highlights the importance of the way the subnetwork is selected.
Overall, these results suggest that subnetwork inference results in better uncer-
tainty calibration and robustness to distribution shift than other popular
uncertainty quantification approaches.

What about smaller subnetworks? One might wonder if a subnetwork of ∼40K
weights is actually necessary. In Figure 4.5, we show that one can also retain strong
calibration with significantly smaller subnetworks. Full covariance inference in a ResNet-
18 would require storing ∼11.2M2 params (∼500TB). Subnet inference reduces the cost
(on top of MAP) to as little as 1K2 params (∼4.0MB) while remaining competitive with
deep ensembles. This suggests that subnetwork inference can allow otherwise intractable
inference methods to be applied to even larger NNs.

To further validate that we can apply subnetwork inference to larger models, we
briefly consider a ResNet-50. We use a subnetwork containing 39,190 / 23,466,560
(0.167%) parameters, which is roughly the same number of parameters as in our ResNet-
18 experiments. Figure 4.6 shows our results for this setting. Subnetwork inference in
ResNet-50 improves upon a simple MAP estimate of the weights in terms of both LL and
calibration metrics. As expected, however, for ResNet-50 the improvement over MAP



70 Bayesian Deep Learning via Subnetwork Inference

30 60 90 120 150 180

rotation (±)

0.0

°2.5

°5.0

°7.5

L
L 40k

10k

3k

1k

300

100

Ens

Diag

30 60 90 120 150 180

rotation (±)

0.0

°2.5

°5.0

°7.5

L
L 40k

10k

3k

1k

300

100

Ens

Diag

(a) Rotated MNIST

0 1 2 3 4 5

corruption

0

°1

°2

°3

30 60 90 120 150 180

rotation (±)

0.0

°2.5

°5.0

°7.5

L
L 40k

10k

3k

1k

300

100

Ens

Diag

(b) Corrupted CIFAR10

Subnet Size Memory

11.2M (100%) 500TB

40K (0.36%) 6.4GB
1K (0.01%) 4.0MB

100 (0.001%) 40KB

(c) Memory Footprints

Figure 4.5: Log-likelihoods of our method with subnetwork sizes between 100-40K using ResNet-
18 on rotated MNIST (left) and corrupted CIFAR10 (middle), vs. Ensembles and Diagonal
Laplace, and respective covariance matrix memory footprints (right). For all subnetwork sizes,
we use the same hyperparameters as in Section 4.6.3 (i.e., no individual tuning per size).
Performance degrades smoothly with subnetwork size, but our method retains strong calibration
even with very small subnetworks (requiring only marginal extra memory).

is smaller than for ResNet-18, where we were able to choose a subnetwork containing
0.38% of the parameters.

0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

er
ro

r

0 30 60 90 120 150 180

−8

−6

−4

−2

0

LL

Ours
MAP

0 30 60 90 120 150 180

rotation (◦)

0.0

0.2

0.4

0.6

EC
E

0 30 60 90 120 150 180

rotation (◦)

0.0

0.5

1.0

1.5

br
ie

r
sc

or
e

Figure 4.6: MNIST rotation results for ResNet-50, reporting predictive error, LL, ECE, and
brier score. We choose a subnetwork containing only 0.167% (39,190 / 23,466,560) of the
parameters of the full network.

Comparing the Parameter Efficiency of Subnetwork Linearised Laplace with
Deep Ensembles Despite the promising results provided by Subnetwork Linearised
Laplace, we note that our method has a notably larger space complexity than our
baselines. We therefore investigate the parameter efficiency of our method.



4.6 Experiments 71

0 10 20 30 40 50

N

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

LL
MNIST Rotation

30
60

90
120

150
180

0 10 20 30 40 50

N

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

CIFAR10 Corruption

0
1

2
3

4
5

Figure 4.7: Rotated MNIST (left) and Corrupted CIFAR10 (right) results for deep ensembles
(Lakshminarayanan et al., 2017) with large numbers of ensemble members (i.e., up to 55).
The horizontal axis denotes the number of ensemble members, and the vertical axis denotes
performance in terms of log-likelihood. Horizontal lines correspond to the performance of our
method, as a reference. Colours denote different levels of rotation (left) and corruption (right).

Our ResNet-18 Model has ∼11.2M parameters. Our subnetwork’s covariance matrix
contains 42,4382 parameters. This totals ∼1,830M parameters. This same amount
of memory could be used to store around 163 ensemble elements. In Figure 4.7 we
compare our subnetwork Linearised Laplace model with increasingly large ensembles on
both rotated MNIST and corrupted CIFAR10. Although the performance of ensembles
improves as more networks are added, it plateaus around 15 ensemble elements. This
is in agreement with the findings of recent works (Antorán et al., 2020; Ashukha et al.,
2020; Lobacheva et al., 2020). At large rotations and corruptions, the log likelihood
obtained by Subnetwork Linearised Laplace is greater than the asymptotic value obtained
by ensembles. This suggests that using a larger number of parameters in an approximate
posterior covariance matrix is a more efficient use of space than saving a large number
of ensemble elements. We also note that inference in a very large ensemble requires
performing a forward pass for every ensemble element. On the other hand, Linearised
Laplace requires performing one backward pass for every output dimension and one
forward pass.

Out-of-Distribution Rejection In this section we provide additional results on
Out-of-distribution (OOD) rejection using predictive uncertainty. First, we train our
models on a source dataset. We then evaluate them on the test set from our source
dataset and on the test set of a target (OOD) dataset. We expect predictions for the
target dataset to be more uncertain than those for the source dataset. Using predictive
uncertainty as the discriminative variable, we compute the area under the ROC curve



72 Bayesian Deep Learning via Subnetwork Inference

for each method under consideration and display them in Table 4.1. The CIFAR-SVHN
and MNIST-Fashion dataset pairs are chosen following Nalisnick et al. (2019b). On the
CIFAR-SVHN task, all methods perform similarly, except for ensembles, which clearly
do best. On MNIST-Fashion, SWAG performs best, followed by Subnetwork Linearised
Laplace and ensembles.

Table 4.1: AUC-ROC scores for out-of-distribution detection, using CIFAR10 vs SVHN and
MNIST vs FashionMNIST as in- (source) and out-of-distribution (target) datasets, respectively.

Source Target Ours Ours (Rand) Dropout Diag-Lap Ensemble MAP SWAG

CIFAR10 SVHN 0.85 ±0.03 0.86 ±0.02 0.85 ±0.01 0.86 ±0.02 0.91 ±0.00 0.86 ±0.02 0.83 ±0.00

MNIST Fashion 0.92 ±0.05 0.75 ±0.02 0.82 ±0.12 0.75 ±0.01 0.90 ±0.09 0.72 ±0.03 0.97 ±0.01

We also simulate a realistic OOD rejection scenario (Filos et al., 2019) by jointly
evaluating our models on an in-distribution and an OOD test set. We allow our methods
to reject increasing proportions of the data based on predictive entropy before classifying
the rest. All predictions on OOD samples are treated as incorrect. Following (Nalisnick
et al., 2019b), we use CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- and out-of-
distribution datasets, respectively. Note that the SVHN test set is randomly subsampled
down to a size of 10,000 to match that of CIFAR10. The results are shown in Figure 4.8.
On CIFAR-SVHN all methods perform similarly, with exceptions being ensembles, which
perform best, and SWAG, which does worse. On MNIST-FashionMNIST, SWAG performs
best, followed by Subnetwork Linearised Laplace. All other methods fail to distinguish
very uncertain in-distribution data from low uncertainty OOD points.

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0 25 50 75 100

% rejected

0.0

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

Ours Diag-Lap Dropout Ours (Rand) Ensemble MAP SWAG

Figure 4.8: Rejection-classification plots.



4.7 Scope and Limitations 73

4.7 Scope and Limitations

Jacobian computation in multi-output models remains challenging. With reverse
mode automatic differentiation used in most deep learning frameworks, it requires as
many backward passes as there are model outputs. This prevents using linearised Laplace
in settings like semantic segmentation (Liu et al., 2019) or classification with large
numbers of classes (Deng et al., 2009). Note that this issue applies to the linearised
Laplace method and that other inference methods, without this limitation, could be used
in our framework.

The choice of prior precision λ determines the performance of the Laplace
approximation to a large degree. Our proposed scheme to update λ for subnetworks relies
on having a sensible parameter setting for the full network. Since inference in the full
network is often intractable, currently the best approach for choosing λ is cross-validation
using the subnetwork approximation directly.

The space requirements for the Hessian limit the maximum number of subnet-
work weights. For example, storing a Hessian for 40K weights requires around 6.4GB
of memory. For very large models, like modern transformers, tractable subnetworks
would represent a vanishingly small proportion of the weights. While we demonstrated
that strong performance does not necessarily require large subnetworks (see Figure 4.5),
finding better subnetwork selection strategies remains a key direction for future research.

4.8 Related Work

Bayesian Deep Learning. There have been significant efforts to characterise the
posterior distribution over NN weights p (w | D). Although asymptotically unbiased,
sampling-based approaches, such as Hamiltonian Monte Carlo (HMC) (Neal, 1995), are
difficult or impractical to scale to large datasets (Betancourt, 2015; Izmailov et al., 2021b).
As a result, approaches that find the best surrogate posterior among an approximating
family (most often Gaussian) have gained popularity. The first of these was the Laplace
approximation, introduced by MacKay (1992), who also proposed approximating the
predictive posterior with that of the linearised model (Khan et al., 2019; Immer et al.,
2021b); see Daxberger et al. (2021a) for a review of recent advances to use the Laplace
approximation in deep learning. The popularisation of larger NN models has made surro-
gate distributions that capture correlations between weights computationally intractable.
Thus, most modern methods make use of the mean field assumption (Blundell et al.,
2015; Hernández-Lobato and Adams, 2015; Gal and Ghahramani, 2016; Mishkin et al.,



74 Bayesian Deep Learning via Subnetwork Inference

2018; Osawa et al., 2019). This comes at the cost of limited expressivity (Foong et al.,
2020) and empirical under-performance (Ovadia et al., 2019; Antorán et al., 2020). We
note that Farquhar et al. (2020) argue that in deeper networks the mean-field assumption
should not be restrictive. Our empirical results seem to contradict this proposition. We
find that scaling up approximations that do consider weight correlations (e.g., MacKay
(1992); Louizos and Welling (2016); Ritter et al. (2018); Maddox et al. (2019)) by
lowering the dimensionality of the weight space outperforms diagonal approximations.
We conclude that more research is warranted in this area. Finally, recent works have
demonstrated the benefit of capturing the multi-modality of the posterior distribution
via ensembles/mixtures (Lakshminarayanan et al., 2017; Fort et al., 2019; Filos et al.,
2019; Wilson and Izmailov, 2020; Eschenhagen et al., 2021).

Neural Linear Methods. These represent a generalised linear model in which the
basis functions are defined by the l−1 first layers of a NN. That is, neural linear methods
perform inference over only the last layer of a NN, while keeping all other layers fixed
(Snoek et al., 2015; Riquelme et al., 2018; Ovadia et al., 2019; Ober and Rasmussen, 2019;
Pinsler et al., 2019; Kristiadi et al., 2020). They can also be viewed as a special case of
subnetwork inference, in which the subnetwork is simply defined to be the last NN layer.

Inference over Subspaces. The subfield of NN pruning aims to increase the
computational efficiency of NNs by identifying the smallest subset of weights that are
required to make accurate predictions; see e.g., Frankle and Carbin (2019); Wang et al.
(2020). Our work differs in that it retains all NN weights but aims to find a small subset
over which to perform probabilistic reasoning. More closely related work to ours is
that of Izmailov et al. (2019), who propose to perform inference over a low-dimensional
subspace of weights; e.g., one constructed from the principal components of the Stochastic
Gradient Descent (SGD) trajectory. Moreover, several recent approaches use low-rank
parameterisations of approximate posteriors in the context of variational inference (Rossi
et al., 2020; Swiatkowski et al., 2020; Dusenberry et al., 2020a). This could also be viewed
as doing inference over an implicit subspace of weight space. In contrast, we propose a
technique to find subsets of weights which are relevant to predictive uncertainty, i.e., we
identify axis-aligned subspaces.

4.9 Summary

This chapter has three main findings (1) modelling weight correlations in NNs is crucial
to obtaining reliable predictive posteriors, (2) given these correlations, unimodal approxi-
mations of the posterior can be competitive with approximations that assign mass to



4.9 Summary 75

multiple modes (e.g., deep ensembles), (3) inference does not need to be performed over
all the weights in order to obtain reliable predictive posteriors.

We use these insights to develop a framework for scaling Bayesian inference to NNs
with many weights. We approximate the posterior over a subset of the weights while
keeping all others deterministic. Computational cost is decoupled from the total number
of weights, allowing us to conveniently trade it off with the quality of approximation.
This allows us to use more expressive posterior approximations, such as full-covariance
Gaussian distributions.

Linearised Laplace subnetwork inference can be applied post-hoc to any pre-trained
model, making it particularly attractive for practical use. Our empirical analysis sug-
gests that this method (1) is more expressive and retains more uncertainty than crude
approximations over the full network, (2) allows us to employ larger NNs, which fit a
broader range of functions, without sacrificing the quality of our uncertainty estimates,
and (3) is competitive with state-of-the-art uncertainty quantification methods, like deep
ensembles.

In this thesis, we have now introduced two methods for improving uncertainty
estimation for NNs, namely Depth Uncertainty Networks (DUNs) and the Subnetwork
Linearised Laplace approximation. But, we did not compare these two methods directly.
However, using deep ensembles as a common baseline in the rotated MNIST and corrupted
CIFAR benchmarks allows us to indirectly compare these methods. While both DUNs
and subnetwork inference outperform ensembles on rotated MNIST, subnetwork inference
provides a much larger performance boost. On the other hand, for corrupted CIFAR,
DUNs performs worse than ensembles, while subnetwork inference performs slightly
better. These results indicate that subnetwork inference provides better uncertainty
estimates, especially as the dataset becomes more complicated. However, there are still
settings in which DUNs might be a more suitable method. For instance, where the neural
network is sufficiently overparameterised relative to the dataset, or when the relative
simplicity of implementing DUNs and/or the lower memory footprint of the method are
important factors.

While subnetwork inference is a promising approach to scaling Bayesian inference to
large NNs, we saw in Figure 4.5 and Figure 4.6 that as the fraction of weights for which
we perform inference decreases, the performance of our method degrades. In the next
chapter, we will explore uncertainty quantification for NNs with very large numbers of
weights. We will do this by constructing efficient ensembles that rely on marginalisation
over different explanations of the data rather than inference over any parameters.





Chapter 5

Sparse-MoEs meet Efficient Ensembles

In this chapter, we continue to consider uncertainty estimation for NNs. However, the
setting we will consider is that of extremely large sparse Mixture of Expert (MoE)
models (with up to 2.7 billion parameters). As a result, even the “scalable” Bayesian
inference method developed in the previous chapter would only allow us to perform
inference over a vanishingly small fraction of the parameters. Instead, we take the
perspective of Wilson (2020); Wilson and Izmailov (2020) that marginalisation is perhaps
more important than Bayesian inference for strong uncertainty estimation performance.
To this end, we study the interplay between sparse MoEs—which adaptively combine
multiple “expert” subnetworks’ explanations of the data when making predictions—and
ensembles—which combine independently trained models’ predictions. This results in
two sets of contributions:

Contribution 1: Complementarity of sparse MoEs and ensembles. In
Section 5.3 we compare and contrast sparse MoEs and ensembles. Later, in Section 5.5,
we show that sparse MoEs and ensembles have complementary features and benefit from
each other. Specifically:

• The adaptive computation in sparse MoEs and the static combination in ensembles
are orthogonal, with additive benefits when used together. At the intersection of
these two model families is an exciting trade-off between performance and compute
(i.e., as measured in Floating Point Operations Per Second (FLOPs)). That is, the
frontier can be mapped out by varying the ensemble size and the sparsity of MoEs.

• Over tasks where either sparse MoEs or ensembles are known to perform well, naive—
and computationally expensive—ensembles of MoEs provide the best predictive
performance. Our benchmarking effort includes the first evaluation of sparse MoEs



78 Sparse-MoEs meet Efficient Ensembles

on uncertainty-related vision tasks, which builds upon the work of Riquelme et al.
(2021).

Contribution 2: Efficient ensemble of experts. In Section 5.4, we propose
Efficient Ensemble of Experts (Efficient Ensemble of Experts (e3)), see Figure 5.1, an
efficient ensemble approach tailored to sparse MoEs. In Section 5.5, we provide evidence
that

• e3 improves over sparse MoEs across few-shot error, likelihood and calibration
error. e3 matches the performance of deep ensembles while using from 30% to 45%
fewer FLOPs.

• e3 gracefully scales up to 2.7B parameter models.

• e3 is both simple—requiring only minor implementation changes—and convenient—
e3 models can be fine-tuned directly from standard sparse-MoE checkpoints.

This chapter is based on the paper “Sparse MoEs meet Efficient Ensembles” (Allingham
et al., 2022b), which was written in collaboration with Florian Wenzel, Zelda Mariet,
Basil Mustafa, Joan Puigcerver, Neil Houlsby, Vincent Fortuin, Balaji Lakshminarayanan,
Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, and Rodolphe Jenatton. Rodolphe,
Carlos, and Dustin, initiated the project and all provided supervision. Rodolphe and I
were both heavily involved with conceptualisation, exploration, coding, evaluation, and
presentation of the results, as well as writing the paper.

5.1 Motivation

NNs typically use all of their parameters to process an input. Sustaining the growth
of such models—reaching today up to 100B+ parameters (Brown et al., 2020)—is
challenging, e.g., due to their high computational and environmental costs (Strubell
et al., 2019; Patterson et al., 2021). In this context, sparse MoEs employ conditional
computation (Bengio et al., 2013) to combine multiple submodels and route examples
to specific “expert” submodels (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al.,
2022; Riquelme et al., 2021). Conditional computation can decouple the growth of the
number of parameters from the training and inference costs, by only activating a subset
of the overall model in an input-dependent fashion.

Paralleling this trend, the deployment of machine learning systems in safety-critical
fields, e.g., medical diagnosis (Dusenberry et al., 2020b) and self-driving cars (Levinson
et al., 2011), has motivated the development of reliable deep learning, e.g., for calibrated



5.1 Motivation 79

h2

h1

h3

h3,1

h2,1

h1,1

h1,2h1,2

h2,2h2,2

h3,2h3,2

Tile

gateK(W1hi,1)

gateK(W2hi,2)

MLP2(hi,1)

MLP1(hi,1)

MLP3(hi,1)

MLP5(hi,2)

MLP4(hi,2)

MLP6(hi,2)

Dispatch

(K=2)
ĥ2,1

ĥ1,1

ĥ3,1

ĥ2,2ĥ2,2

ĥ1,2ĥ1,2

ĥ3,2ĥ3,2

Combine

h̄1,1

h̄1,2h̄1,2

h̄2,1

h̄2,2h̄2,2

h̄3,1

h̄3,2h̄3,2

Softmax

Ensemble

(Mean)

Transformer
Block

(n−3)×

Norm MSA + Norm p-MoE +

p-MoE Block

Transformer
Block

p-MoE
Block Classifier

1st p-MoE
block only

Figure 5.1: End-to-end overview of e3 with E=6 experts, partitioned into M =2 groups,
with sparsity of K=2, and a “last-2” configuration. Top: e3 contains a sequence of transformer
blocks, followed by alternating transformer and p(artitioned)-MoE blocks. As in ViT, images are
split into patches whose embeddings are processed by each block. Here, we show 1 embedding
for each of three images ( , , ). Bottom left: In a p-MoE block, we replace the transformer
block’s MLP with parallel partitioned expert MLP, see (5.2). The effect of the routing weights
is not depicted. Embeddings are tiled ( ) in the first p-MoE block only. Bottom right: The
classifier averages predictions from the final tiled representations ( ).

and robust predictions (Ovadia et al., 2019). Among the existing approaches, ensembles
of NNs have remarkable performance for calibration and accuracy under dataset shifts
(Ovadia et al., 2019). These methods improve reliability by aggregating the predictions
of individual submodels, referred to as ensemble members. However, this improvement
comes at a significant computational cost. Hence, naively ensembling NNs that continue
to grow in size becomes less and less feasible. In this chapter, we try to overcome this
limitation. Our core motivation is to improve the robustness and uncertainty estimates of
large-scale fine-tuned models through ensembling, but to do so in a tractable—and thus
practically useful—manner, by carefully developing a hybrid approach using advances in
sparse MoEs.

While sharing conceptual similarities, these two classes of models—MoEs and ensembles—
have different properties. Sparse MoEs adaptively combine their experts depending on
the inputs, and the combination generally happens at internal activation levels. En-
sembles typically combine several models in a static way and at the prediction level.
Moreover, these two classes of models tend to be benchmarked on different tasks: few-shot
classification for MoEs (Riquelme et al., 2021) and uncertainty-related evaluation for
ensembles (Ovadia et al., 2019; Gustafsson et al., 2020). For example, sparse MoEs are
seldom, if ever, applied to the problems of calibration. Thus, we are also motivated to
better understand the interplay between these two classes of models.



80 Sparse-MoEs meet Efficient Ensembles

5.2 Preliminaries

We focus on classification tasks where we learn classifiers of the form f(x;θ) based on
some training data D = {(xn, yn)}Nn=1. A pair (xn, yn) corresponds to an input xn ∈ RP

together with its label yn ∈ {1, . . . , C} belonging to one of the C classes. The model
f(·;θ) is parameterised by θ and outputs a C-dimensional probability vector. We use ◦
to refer to the matrix element-wise product.

5.2.1 Vision Transformers and Sparse MoEs

Vision Transformers. Throughout this chapter, we choose the model f to be a Vision
Transformer (ViT) (Dosovitskiy et al., 2021). ViT is growing in popularity for vision,
especially in transfer-learning settings, where it was shown to outperform convolutional
networks while requiring fewer pre-training resources. ViT operates at the level of patches.
An input image is split into equal-sized patches (e.g., 32×32, 16×16, or 14×14 pixels)
whose resulting sequence is (linearly) embedded and processed by a Transformer (Vaswani
et al., 2017). The operations in the Transformer then mostly consist of a succession of
Multi-headed Self-Attention (MSA) and Multi-Layer Perceptron (MLP) layers. ViT is
defined at different scales (Dosovitskiy et al., 2021): S(mall), B(ase), L(arge) and H(uge);
see specifications in Section C.1.1. For example, ViT-L/16 stands for a large ViT with
patch size 16×16.

Sparse MoEs and V-MoEs. The main feature of sparsely-gated mixture-of-experts
models (sparse MoE) lies in the joint use of sparsity and conditional computation (Bengio
et al., 2013). In those models, we only activate a small subset of the network parameters
for a given input, which allows the total number of parameters θ to grow while keeping
the overall computational cost constant. The experts are the subparts of the network
activated on a per-input fashion.

Central to our study, Riquelme et al. (2021) recently extended ViT to sparse MoEs.
Their extension, referred to as Vision-MoE (V-MoE), follows the successful applications
of sparse models in NLP (Shazeer et al., 2017). Riquelme et al. (2021) show that V-MoEs
dominate their “dense” ViT counterparts on a variety of tasks for the same computational
cost. In the specific case of V-MoEs, the experts are placed in the MLP layers of the
Transformer, a design choice reminiscent of Lepikhin et al. (2021) in NLP. Given the



5.2 Preliminaries 81

input h ∈ RD of such a layer, the output of a single MLP(h) is replaced by

MoE(h) =
E∑

e=1

ge(h) · MLPe(h) with {ge(h)}Ee=1 = topK(softmax(Wh)), (5.1)

where the routing weights {ge(h)}Ee=1 combine the outputs of the E different experts
{MLPe}Ee=1. To sparsely select the experts, topK sets all but the K largest weights to zero.
The router parameters W ∈ RE×D are trained together with the rest of the network
parameters. We call the layer defined by (5.1) a MoE layer. In practice, the weights
{ge(h)}Ee=1 are obtained by a noisy version of the routing function topK(softmax(Wh+

σ · ε)) with ε ∼ N (ϵ |0, I), which mitigates the non-differentiability of topK when
combined with auxiliary losses (see Appendix A in Shazeer et al. (2017)). Making
non-differentiable operators smooth with some noise injection is an active area of research
(Duchi et al., 2012; Abernethy et al., 2016; Berthet et al., 2020). We use the shorthand
gateK(z) = topK(softmax(z+ σ · ε)) and take σ = 1/E as in Riquelme et al. (2021).

In this chapter, we consider the “last-n” setting of Riquelme et al. (2021) wherein
only a few MoE layers are placed at the end of the Transformer (n = 2 for the {S, B, L}
scale and n = 5 for H). This setting retains most of the performance gains of V-MoEs
while greatly reducing the training cost.

5.2.2 Ensembles of Neural Networks

Ensembles. We build on the idea of ensembles, which is a known scheme to improve
the performance of individual models (Hansen and Salamon, 1990; Geman et al., 1992;
Krogh and Vedelsby, 1995; Opitz and Maclin, 1999; Dietterich, 2000; Lakshminarayanan
et al., 2017). Formally, we assume a set of M model parameters Θ = {θm}Mm=1. We refer
to M as the ensemble size. Prediction proceeds by computing 1

M

∑
θ∈Θ f(x;θ), i.e., the

average probability vector over the M models. To assess the diversity of the predictions
in the ensemble, we will use the KL divergence DKL [f(xt;θm) || f(xt;θm′)] between the
predictive distributions f(xt;θm) and f(xt;θm′), averaged over the test input xt and all
pairs (m,m′) of ensemble members.

Batch ensembles. Wen et al. (2020) construct a Batch Ensemble (BE) as a collection
of submodels, with the parameters θm ∈ Θ sharing components. This mitigates the
computational and memory cost of ensembling, while still improving performance. We
focus on the example of a single dense layer in f with parameters U ∈ RD×L, assuming
no bias. BE defines M copies of parameters {Um}Mm=1 so that Um = U · (rms⊤m), where



82 Sparse-MoEs meet Efficient Ensembles

U are parameters shared across ensemble members, and rm and sm are separate D-
and L-dimensional vectors for ensemble member m. Given an input, BE produces
M outputs, which are averaged after applying all layers. Despite the simple rank-1
parametrisation, BE leads to remarkable predictive performance and robustness (Wen
et al., 2020). Notably, the efficiency of BE relies on both the parameter sharing and
the tiling of the inputs to predict with the M ensemble members, two insights that we
exploit in this chapter.

5.2.3 Pre-training and Fine-tuning

Large-scale Transformers pre-trained on upstream tasks were shown to have strong
performance when fine-tuned on smaller downstream tasks, across a variety of domains
(Devlin et al., 2019; Dosovitskiy et al., 2021; Radford et al., 2021). We follow this paradigm
and focus on the fine-tuning of models pre-trained on JFT-300M (Sun et al., 2017), similar
to Riquelme et al. (2021). We will thus assume the availability of already pre-trained
ViT and V-MoE model checkpoints. Our assumption relies on the growing popularity
of transfer learning, e.g., Kolesnikov et al. (2020), and the increasing accessibility of
pre-trained models in repositories such as www.tensorflow.org/hub or www.pytorch.
org/hub. The fine-tuning of all the approaches we study here, including extensions of
ViT and V-MoE, will be either directly compatible with those checkpoints or require only
mild adjustments, e.g., reshaping or introducing new downstream-specific parameters (see
Section C.2). Also, unless otherwise mentioned, the performance we report will always
be downstream, e.g., for ImageNet (Deng et al., 2009) or CIFAR10/100 (Krizhevsky,
2009). In all our comparisons, we will use the downstream training FLOPs, or GFLOPs
(i.e., 109 FLOPs), to quantify the computational cost of the different methods.

5.3 Sparse MoEs meet Ensembles

As illustrated in Table 5.1, sparse MoEs and ensembles have different properties. For
instance, ensembles typically do not use conditional computation and just statically
combine members at the prediction level. This contrasts with sparse MoEs where the
different experts are combined at internal activation levels while enjoying per-input
adaptivity through the routing logic, see (5.1). In terms of cost, sparse MoEs are usually
designed to match the inference time of their dense counterparts whereas ensembles, in
their simplest forms, will typically lead to a substantial overhead. In this section, we study
the extent to which these properties are complementary and may benefit from each other.

https://www.tensorflow.org/hub
www.tensorflow.org/hub
https://www.pytorch.org/hub
www.pytorch.org/hub
https://www.pytorch.org/hub
www.pytorch.org/hub


5.3 Sparse MoEs meet Ensembles 83

Table 5.1: Overview of key properties of sparse MoEs, ensembles, and e3. e3 achieves the best
of both worlds. dense is a base model upon which we add the sparse MoE or ensemble logic,
e.g., a ViT model in this chapter.

Predictions Combination Level Conditional Computation Cost

Sparse MoEs Single Activation Yes, adaptively per-input ≈ dense
Ensembles Multiple Prediction No, static > dense

e3 Multiple Activation & prediction Yes, adaptively per-input ≈ dense

1 2 3 4 5 6 7 8

K

1
2

3
4

5
6

7
8

M

0.84

0.82

0.80

0.78

0.76

(a) Log-Likelihood (LL)
[

I(
I(

] 1 2 3 4 5 6 7 8

K

1
2

3
4

5
6

7
8

M

50

150

250

350

450

(b) (downstream) GFLOPs
[

I(
I(

] 1 2 3 4 5 6 7 8

K

1
2

3
4

5
6

7
8

M

8.0

7.5

7.0

6.5

6.0

(c) log
[

LL(K,M)−LL(1,1)

GFLOPs(K,M)−GFLOPs(1,1)

]
Figure 5.2: Increasing static (M) and adaptive (K) ensembling on ImageNet, for V-MoE-
S/32. Yellow/purple indicates better/worse performance. Increasing both static and adaptive
ensembling is beneficial, the latter being more efficient.

In Section 5.5, we further evaluate this complementarity on tasks where either sparse
MoEs or ensembles are known to perform well, e.g., few-shot and Out-of-distribution
(OOD) evaluations, respectively.

To investigate the interactions of the properties in Table 5.1, we study the performance
of downstream deep ensembles (i.e., with all ensemble members having the same upstream
checkpoint) formed by M independent V-MoEs with E experts per MoE layer and a
sparsity level K (the larger K, the more selected experts). M controls the static
combination, while K and E impact the adaptive combination of experts in each sparse
MoE model. We report in Figure 5.2 the ImageNet performance and compute cost for
ensembles with varying choices of K and M , while keeping E = 32 fixed. We focus on K

rather than E to explore adaptive computation, as we found the performance quickly
plateaus with E (see Figure C.2 in the Appendix). Also, by fixing E = 32, we match
more closely the setup of Riquelme et al. (2021). The architecture of the V-MoE is
ViT-S/32, see details in Section C.1.7. We make the following observations:



84 Sparse-MoEs meet Efficient Ensembles

2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

N
LL

 (l
ow

er
 is

 b
et

te
r)

downstream log(GFLOPs) (lower is better)

Figure 5.3: ImageNet evaluation
for ViT ( ) and V-MoE (K=1) ( )
ensembles of size {1, 2, 4} ( , , ).
Model sizes: S/32 ( ), B/32 ( ),
L/32 ( ), L/16 ( ), and H/14 ( ).
ViT and V-MoE benefit from en-
sembling equally, at all scales.

Investigating the cumulative effects of adaptive
and static ensembling. In the absence of ensem-
bles (i.e., when we consider M = 1), and given a
fixed number of experts, the authors of Riquelme et al.
(2021) already reported an increase in performance as
K gets larger. Interestingly, we observe that for each
value of K, it is also beneficial to increase the ensem-
ble size M . In other words, the static combination of
ensembles is beneficial when applied to sparse MoEs.
This observation is perhaps surprising since adaptive
combination may already encapsulate the effect of
static combination. Figure 5.3, and Section C.8.1,
show that the combination of static ensembling and
adaptivity is beneficial to Negative Log Likelihood
(NLL) for a range of ViT families. We also see that
the benefits of static ensembling are similar for V-MoE
and ViT (which does not have any adaptivity).

Investigating ensembles of sparse MoEs with fewer experts. In Section C.8.2,
we compare the performance of a V-MoE with E = 32 experts and ensembles of V-MoEs
with fewer experts, namely (M = 2, E = 16) and (M = 4, E = 8). We see that the
performance—e.g., as measured by NLL—is better for (M = 4, E = 8) than (M = 2,
E = 16) which is in turn better than (M = 1, E = 32). Thus, we conclude that reducing
the number of experts only mildly affects the combination of adaptive and
static ensembling.

Investigating the trade-off between FLOPs and performance. Without any
computational constraints, the previous observation would favour approaches with the
largest values of K and M . However, different values of (K,M) lead to different
computational costs, as measured here by FLOPs, with (K,M) = (1, 1) being the cheapest.
Figure 5.2b shows, as expected, that the number of FLOPs grows more quickly along the
M axis than along the K axis. To capture the various trade-offs at play, in Figure 5.2c
we report the logarithm of the normalised gains in log likelihood LL(K,M)−LL(1,1)

GFLOPs(K,M)−GFLOPs(1,1)
when going from (K,M) = (1, 1) to other choices of (K,M). Interestingly, it appears
more advantageous to first grow K, i.e., the adaptive combination, before growing M .



5.4 Efficient Ensemble of Experts 85

Summary. While simple ensembling of sparse MoEs results in strong predictive perfor-
mance, we lose their computational efficiency. We next show how to efficiently combine
ensembling and sparse MoEs, exploiting the fact that statically combining sparse MoEs
with fewer experts remains effective.

5.4 Efficient Ensemble of Experts

Equipped with the insights from Section 5.3, we describe efficient ensemble of experts (e3),
with the goal of keeping the strengths of both sparse MoEs and ensembles. Conceptually,
e3 jointly learns an ensemble of smaller sparse MoEs, where all layers without experts
(e.g., attention layers) are shared across the members.

5.4.1 The Architecture

There are two main components in e3:
Disjoint subsets of experts. We change the structure of (5.1) by partitioning

the set of E experts into M subsets of E/M experts (assuming that E is a multiple of
M). We denote the subsets by Em. For example, E1 = {1, 2, 3} and E2 = {4, 5, 6} for
E = 6 and M = 2. Intuitively, the ensemble members have separate parameters for
independent predictions, while efficiently sharing parameters among all non-expert layers.
Instead of having a single routing function gateK(W·) as in (5.1), we apply separate
routing functions gateK(Wm·) to each subset Em. Note that this does not affect the total
number of parameters since W has E rows while each Wm has E/M rows. A similar
partitioning of the experts was done in Yang et al. (2021) but not exploited to create
different ensemble members, in particular not in conjunction with tiled representations,
which we show to be required to get performance gains (see Section 5.4.2).

Tiled representation. To jointly handle the predictions of the M ensemble members,
we tile the inputs by a factor M , inspired by Wen et al. (2020). This enables a simple
implementation of e3 on top of an existing MoE. In Section C.5, we connect sparse MoEs
and BE, illustrating that tiling naturally fits into the formalism of sparse MoEs. Because
of the tiling, a given image patch has M different representations that, when entering
an MoE layer, are each routed to their respective expert subsets Em. Formally, consider
some tiled inputs H ∈ RB×M×D where B refers to the batch size (a batch contains image
patches) and hi,m ∈ RD is the representation of the i-th input for the m-th member. The



86 Sparse-MoEs meet Efficient Ensembles

routing logic in e3 can be written as

p-MoE(hi,m) =
∑
e∈Em

ge(hi,m) · MLPe(hi,m) with {ge(hi,m)}e∈Em= gateK(Wmhi,m), (5.2)

where the routing weights are now Wm ∈ R(E/M)×D; see Figure 5.1.
To echo the observations from Section 5.3, we can first see that e3 brings together

the static and adaptive combination of ensembles and sparse MoEs, which we found to
be complementary. However, we have seen that static ensembling comes at the cost of
a large increase in FLOPs, thus we opt for an efficient ensembling approach. Second,
we “split” the MoE layers along the axis of the experts, i.e., from E experts to M times
E/M experts. We do so since we observed that the performance of sparse MoEs tends
to plateau quickly for more experts. We note that e3 retains the property of ensembles
to output multiple predictions per input.

In a generic implementation, we tile a batch of B inputs X ∈ RB×P by a factor
M to obtain the tiled inputs Xtiled = [X; . . . ;X] ∈ R(M ·B)×P and the model processes
f(Xtiled;θ). Since tiling in e3 has an effect only from the first MoE layer onwards,
we postpone the tiling operation to that stage, thus saving otherwise redundant prior
computations in non-MoE-layers. For example, for L/16 and K = M = 2, we can
save about 47% of the FLOPs. Further implementation details of e3, and a discussion
of the increased memory consumption due to tiling, are in Section C.3. Code can be
found at https://github.com/google-research/vmoe. Finally, we note that although
e3 and BE share conceptual design similarities—tiled representation and sharing of
parameters—they differ in fundamental structural ways, see Section C.6.

5.4.2 Ablation Studies: Partitioning and Tiling

Our method introduces two changes to V-MoEs: (a) the partitioning of the experts and
(b) the tiling of the representations. In this section, we assess the separate impact of
each of those changes and show that it is indeed their combination that explains the
performance gains. We summarise the results of this study in Table 5.2, which shows
ImageNet performance—NLL, classification error, Expected Calibration Error (ECE)
(Guo et al., 2017), and Kullback-Leibler Divergence (KLD)—for different ablations of e3.
See Section C.10, for end-to-end overview diagrams in the style of Figure 5.1, for these
ablations. We use E = 32 experts. We provide FLOPs measurements for these ablations
in Section C.9.

https://github.com/google-research/vmoe


5.4 Efficient Ensemble of Experts 87

Table 5.2: ImageNet performance (mean ± std. err. over 8 seeds) of e3-B/32 (K = M = 2),
V-MoE (K = 4), and two ablations: only tiling and only partitioning. The noise in gateK is
denoted by σ.

NLL ↓ Error ↓ ECE ↓ KL ↑
V-MoE 0.636 ±0.001 16.70 ±0.04 0.034 ±0.001 —

e3 0.612 ±0.001 16.49 ±0.02 0.013 ±0.000 0.198 ±0.003

Tiling 0.637 ±0.002 16.74 ±0.06 0.028 ±0.001 0.000 ±0.000

Tiling (σ × 2) 0.638 ±0.001 16.72 ±0.03 0.033 ±0.001 0.001 ±0.000

Tiling (σ × 4) 0.638 ±0.001 16.74 ±0.03 0.033 ±0.001 0.002 ±0.000

Partitioning 0.640 ±0.001 16.72 ±0.05 0.034 ±0.001 —

Partitioning without Tiling

We first compare e3 with a variant of V-MoE where we only partition the set of experts
(Partitioning). In this variant, each input hi ∈ RD (note the dropping of the index m

due to the absence of tiling) can select K experts in subset Em, resulting in a total of
K×M selected experts per input. Formally, (5.2) becomes

part-only-MoE(hi) =
M∑

m=1

∑
e∈Em

ge(hi) · MLPe(hi) with {ge(hi)}e∈Em = gateK(Wmhi).

The expert prototyping of Yang et al. (2021) leads to a similar formulation. As shown in
Table 5.2, across all metrics, Partitioning is not competitive with e3. We do not report
KL since, without tiling, Partitioning does not output multiple predictions per input.

Tiling without Partitioning

We now compare e3 with the variant where only the tiling is enabled (Tiling). In this
case, we have tiled inputs H ∈ RB×M×D applied to the standard formulation of (5.1).
Compared with (5.2), there is no mechanism to enforce the M representations of the
i-th input across the ensemble members, i.e., {MoE(hi,m)}Mm=1, to be different. Indeed,
without partitioning, each hi,m could select K identical experts. As a result, we expect
Tiling to output M similar predictions across ensemble members. This is confirmed in
Table 5.2 where we observe that the KL for Tiling is orders of magnitude smaller than
for e3. To mitigate this effect, we also tried to increase the level of noise σ in gateK (by
a factor {2, 4}), to cause the expert assignments to differ across {hi,m}Mm=1. While we do
see an increase in KL, Tiling still performs worse than e3 across all metrics.



88 Sparse-MoEs meet Efficient Ensembles

Table 5.3: ImageNet performance (mean ± std. err. over 8 seeds) of e3-B/32 (K = M = 2),
E = 32 total experts, and varying expert overlap between subsets Em.

Overlap NLL ↓ Error ↓ ECE ↓ KL ↑
0 (=e3) 0.612 ±0.001 16.49 ±0.02 0.013 ±0.000 0.198 ±0.003

2 0.617 ±0.003 16.55 ±0.09 0.016 ±0.001 0.167 ±0.005

4 0.622 ±0.001 16.62 ±0.02 0.017 ±0.001 0.148 ±0.003

8 0.627 ±0.002 16.67 ±0.07 0.021 ±0.001 0.122 ±0.010

16 0.639 ±0.004 16.82 ±0.07 0.030 ±0.003 0.077 ±0.011

32 (=Tiling) 0.637 ±0.002 16.74 ±0.06 0.028 ±0.001 0.000 ±0.000

Interestingly, we can interpret Tiling as an approximation, via M samples, of the
marginalisation Eε1,...,εℓ [f(x;θ)] with respect to the noise {εl}ℓl=1 in the ℓ MoE layers of
f(·;θ) (further assuming the capacity constraints of the experts, as described in Riquelme
et al. (2021), do not bias the M samples).

Tiling with Increasing Parameter Sharing

The results in Table 5.2 (as well as Section C.8.3) suggest that the strong performance
of e3 is related to its high-diversity predictions. We hypothesise that this diversity is
a result of the large number of non-shared parameters in each ensemble member, i.e.,
the partitioning of the experts. To test this hypothesis, we allow the subsets Em in
e3 to have some degree of overlap (i.e., ensemble members share some experts), thus
interpolating between e3 and Tiling. For example, with total experts E = 32 and an
ensemble size M = 2, an overlap of 8 shared experts means that each ensemble member
has (32 − 8)/2 = 12 unique experts, and 12 + 8 = 20 in total. Table 5.3 shows that
increasing the number of shared experts directly decreases diversity and thus NLL, Error,
and ECE. We see the same trends for K = 1 (rather than K = 2; see Table C.9).

Multiple Predictions without Tiling or Partitioning

As highlighted in Table 5.1, an ensemble of size M outputs M predictions for a given
input (thereafter, averaged) while sparse MoEs only produce a single prediction. Thus, a
natural question is how much the gains of e3 are simply due to its ability to produce
multiple predictions, rather than its specific tiling and partitioning mechanisms? To
answer this, we investigate a simple multi-prediction variant of sparse MoEs (Multi-pred)
wherein the last MoE layer of the form (5.1) is replaced by

Multi-pred-MoE(h) = {ge(h) · MLPe(h)}ge(h)>0 ∈ RK×Q, (5.3)



5.4 Efficient Ensemble of Experts 89

Table 5.4: ImageNet performance (mean ± std. err. over 8 seeds) of V-MoE-B/32 and a
simple multi-prediction variant (Multi-pred) whose last MoE layer is changed as in (5.3).

K NLL ↓ Error ↓ ECE ↓ KL ↑
e3 (M = 2) 1 0.622 ±0.001 16.70 ±0.03 0.018 ±0.000 0.217 ±0.003

Multi-pred 2 0.636 ±0.001 17.16 ±0.02 0.024 ±0.000 0.032 ±0.001

V-MoE 2 0.638 ±0.001 16.76 ±0.05 0.033 ±0.001 —

e3 (M = 2) 2 0.612 ±0.001 16.49 ±0.02 0.013 ±0.000 0.198 ±0.003

Multi-pred 4 0.645 ±0.001 17.39 ±0.04 0.021 ±0.000 0.011 ±0.001

V-MoE 4 0.636 ±0.001 16.70 ±0.04 0.034 ±0.001 —

e3 (M = 2) 4 0.611 ±0.001 16.45 ±0.03 0.014 ±0.000 0.193 ±0.003

Multi-pred 8 0.650 ±0.001 17.50 ±0.03 0.021 ±0.000 0.005 ±0.000

V-MoE 8 0.635 ±0.002 16.72 ±0.06 0.028 ±0.001 —

where {ge(h)}Ee=1 = gateK(Wh), and we have assumed MLPe(h) ∈ RQ. Instead of
summing the expert outputs like in (5.1), we stack the K selected expert contributions
(as a reminder, gateK zeroes out the E −K smallest weights). Keeping track of those
K contributions makes it possible to generate K different predictions per input as in
the classifier of Figure 5.1, thus aiming at capturing model uncertainty around the true
prediction.

Table 5.4 compares the ImageNet performance of this simple multiple-prediction
method with the standard V-MoE and e3. In all cases, Multi-pred under performs
relative to e3. Indeed, despite improvements in ECE, it is only for K = 2, that Multi-pred
provides small gains in NLL relative to V-MoE, while its classification error is always
worse. In fact, Multi-pred for K = 4 performs worse in terms of NLL, classification error,
and diversity than for K = 2. The KL diversity metric indicates that the Multi-pred
is unable to provide diverse predictions. This indicates that it is specifically tiling and
partitioning in e3 that provide good performance.

5.4.3 Comparison with other Efficient Ensembling Strategies

In the previous subsection, we saw that a simple approach to multiple predictions in a
V-MoE model is unable to achieve good diversity in predictions and thus strong predictive
performance. Following Havasi et al. (2020); Soflaei et al. (2020), a possible fix to this
problem would be to have a multi-prediction and multi-input approach. Furthermore,
other efficient ensembling strategies could provide alternative solutions to this problem.
Unfortunately, as we show in Table 5.5, while common efficient ensembling strategies
such as BE (Wen et al., 2020), Monte Carlo (MC) Dropout (Gal and Ghahramani, 2016),



90 Sparse-MoEs meet Efficient Ensembles

Table 5.5: ImageNet performance (mean ± std. err. over 8 seeds) of different efficient ensemble
approaches based on a ViT-B/32 architecture.

K M NLL ↓ Error ↓ ECE ↓ KL ↑ GFLOPs ↓
ViT – – 0.688 ±0.003 18.65 ±0.08 0.022 ±0.000 — 78.0

BE ViT – 2 0.682 ±0.003 18.47 ±0.05 0.021 ±0.000 0.040 ±0.001 97.1

V-MoE 2 – 0.638 ±0.001 16.76 ±0.05 0.033 ±0.001 — 94.9
MC Dropout V-MoE 1 2 0.648 ±0.002 17.10 ±0.05 0.019 ±0.001 0.046 ±0.000 97.2

MIMO V-MoE 2 2 0.636 ±0.002 16.97 ±0.04 0.028 ±0.001 0.000 ±0.000 96.3
2 4 0.672 ±0.001 17.72 ±0.04 0.037 ±0.000 0.001 ±0.000 99.0

e3 1 2 0.622 ±0.001 16.70 ±0.03 0.018 ±0.000 0.217 ±0.003 105.9

and Multi-input Multi-output (MIMO) (Havasi et al., 2020), do improve slightly on
ViT/V-MoE, they are unable to match the performance of e3. In Section C.7, we provide
a detailed description of how we carefully apply these methods to ViT/V-MoE to ensure
a fair evaluation (sometimes even designing extensions of these methods). We also give
results for additional K and M values.

5.5 Evaluation

We now benchmark e3 against V-MoE. As a baseline, we also include results for down-
stream ensembles of V-MoE and ViT. These ensembles offer a natural baseline against
e3 as they also use a single upstream checkpoint, are easy to implement, and provide
consistent improvements upon V-MoE. In Section C.8.12, we compare with upstream
ensembles that require multiple upstream checkpoints (Mustafa et al., 2020). All results
correspond to the average over 8 (for {S, B, L} single models) or 5 (for H single models
and all up/downstream ensembles) replications. In Section C.8 we provide results for
additional datasets and metrics as well as standard errors. Following Riquelme et al.
(2021), we compare the predictive-performance vs. compute cost trade-offs for each
method across a range of ViT families. In the results below, e3 uses (K,M) = (1, 2),
single V-MoE models use K = 2, V-MoE ensembles use K = 1, and all use E = 32.
Experimental details, including those for our upstream training, downstream fine-tuning,
hyperparameter sweeps, and (linear) few-shot evaluation, can be found in Section C.1.

V-MoE vs. ViT

• Ensembles help V-MoE just as much as ViT. Ensembling was expected
to benefit ViT. However, Figures 5.3 to 5.8 suggest that ensembling provides



5.5 Evaluation 91

2 3 4

0.4

0.5

0.6

0.7

0.8

N
LL

 (l
ow

er
 is

 b
et

te
r)

ImageNet

3.0 3.2 3.4 3.6
0.40

0.42

0.44

0.46

0.48
ImageNet

2 3 4

15

20

25

10
-S

ho
t E

rr
or

 (l
ow

er
 is

 b
et

te
r)

Mean Across Datasets

3.0 3.2 3.4 3.6

14

15

16

17

Mean Across Datasets

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 L/16 H/14 1 Member 2 Members 4 Members

Figure 5.4: ImageNet NLL (left, centre left) and mean 10-shot error across datasets (centre
right, right), with zoomed-in plots of highlighted areas. Zoomed-in plots include additional
ensemble baselines. Dashed lines show Pareto frontiers, which tend to be defined by e3.

2 3 4

0.01

0.02

0.03

0.04

EC
E 

(lo
w

er
 is

 b
et

te
r)

ImageNet

3.0 3.2 3.4 3.6

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

ImageNet

2 3 4

0.02

0.03

0.04

0.05

0.06

0.07

ImageNet-C (average)

2 3 4

0.10

0.15

0.20

0.25

0.30

0.35

0.40
ImageNet-A

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 L/16 H/14 1 Member 2 Members 4 Members

Figure 5.5: ECE for ImageNet (left), with a zoomed-in plot of the highlighted area (centre
left), and under distribution shift (right, centre right). This is a metric for which ensembles are
known to perform well, whereas, to the best of our knowledge, the performance of V-MoE has
not been evaluated. The zoomed-in plot includes additional ensemble baselines for comparison.
Dashed lines show Pareto frontiers.

2 3

0.00

0.05

0.10

0.15

0.20

0.25

FP
R

@
95

 (l
ow

er
 is

 b
et

te
r)

CIFAR10 vs. CIFAR100

2.50 2.75 3.00

0.030

0.035

0.040

0.045

0.050

0.055

0.060
CIFAR10 vs. CIFAR100

2 3

0.00

0.01

0.02

0.03

0.04

CIFAR10 vs. SVHN

2 3

0.02

0.04

0.06

0.08

0.10

0.12

0.14
CIFAR10 vs. Places365

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 L/16 1 Member 2 Members 4 Members

Figure 5.6: OOD detection, measured by false positive rate at 95% precision (Fort et al.,
2021), for models fine-tuned on CIFAR10, with a zoomed-in plot of the highlighted area. This is
a metric for which ensembles are known to perform well, whereas, to the best of our knowledge,
the performance of V-MoE has not been evaluated. The zoomed-in plot includes additional
ensemble baselines for comparison. Dashed lines show Pareto frontiers.



92 Sparse-MoEs meet Efficient Ensembles

similar gains for V-MoE in terms of few-shot performance, NLL, ECE, OOD
detection, and robustness to distribution shift. We believe this has not been
observed before. Moreover, a downstream ensemble with four H/14 V-MoEs leads
to an 88.8% accuracy on ImageNet (even reaching an impressive 89.3% for an
upstream ensemble that further benefits from multiple upstream checkpoints, see
Table C.12).

• ECE is not consistent for different ViT/V-MoE families. We see the ECE,
unlike other metrics presented in this chapter, tends not to provide consistent trends
as we increase the ViT family size (Figure 5.5). This observation is consistent with
Minderer et al. (2021), who noted similar behaviour for a range of models. They
note that post-hoc temperature scaling can improve consistency.

• ViT consistently provides better ECE than V-MoE. Surprisingly, despite
V-MoE tending to have better NLL than ViT (Figure 5.3), their ECE is worse
(Figure 5.5).

• V-MoE outperforms ViT in OOD detection. With L/32 being the only
exception, V-MoE outperforms ViT on a range of OOD detection tasks (Figure 5.6).
While this may seem surprising, given the opposite trend for ECE, it suggests that
ViT makes more accurate predictions about the scale of the uncertainty estimates
while V-MoE makes better predictions about the relative ordering of the uncertainty
estimates.

• For smaller ViT families, V-MoE outperforms ViT in the presence of
distribution shift. In contrast to the OOD detection results, Figure 5.7 shows
that for smaller ViT families V-MoE improves on the performance of ViT. However,
as the ViT family becomes larger, this trend is less consistent.

Efficient Ensemble of Experts

• e3 improves classification performance. As shown in Figure 5.4, e3 is either
on or very near to the Pareto frontiers for NLL and 10-shot classification error,
despite the fact that these are metrics for which ensembles and V-MoE, respectively,
are known to perform well. Figure 5.8 shows that similar conclusions hold for
CIFAR10/100 NLL.

• e3 performs best at the largest scale. The difference in predictive performance
between e3 and V-MoE—or ensembles thereof—increases as the ViT family becomes



5.5 Evaluation 93

2 3 4

1.0

1.5

2.0

2.5

N
LL

 (l
ow

er
 is

 b
et

te
r)

ImageNet-C (average)

3.0 3.2 3.4 3.6

0.85

0.90

0.95

1.00

1.05

1.10

ImageNet-C (average)

2 3 4

2

3

4

5

6

7

ImageNet-A

2 3 4

0.8

1.0

1.2

1.4

1.6
ImageNet-V2

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 L/16 H/14 1 Member 2 Members 4 Members

Figure 5.7: NLL under distribution shift for models trained on ImageNet. For ImageNet-C,
we provide a zoomed-in plot of the highlighted area. The zoomed-in plot includes additional
ensemble baselines. Dashed lines show Pareto frontiers, which tend to be defined by e3.

larger (Figures 5.4 to 5.8, and Section C.4 where we propose a scheme to normalise
performances across scales).

• e3 becomes Pareto efficient for larger ViT families in the presence of
distribution shift. Figure 5.7 shows that e3 is more robust to distribution shift
for larger ViT families, despite less consistent V-MoE performance at scale. When
averaged over the shifted datasets (ImageNet-C, ImageNet-A, ImageNet-V2), e3

improves on V-MoE in terms of NLL for all ViT families other than S/32, with
improvements up to 8.33% at the largest scale; see Section C.8.10.

• e3 improves ECE over ViT and V-MoE. Despite V-MoE providing poor ECE,
e3 does not suffer from this limitation (Figure 5.5). For most ViT families, e3 also
provides better ECE than V-MoE ensembles.

• e3 does not provide consistent OOD detection performance. Firstly,
Figure 5.6 shows that for small ViT families, e3 performs worse than V-MoE and
(even ViT in some cases). Nevertheless, as above, the relative performance improves
for larger ViT families such that e3 becomes Pareto efficient for two dataset pairs.
Secondly, e3 seems to perform better on the more difficult near OOD detection task
(CIFAR10 vs. CIFAR100). These results, although sometimes subtle, are consistent
across OOD detection metrics and dataset pairs, as shown in Section C.8.

Summary. While no single model performs best in all of our evaluation settings, we do
find that e3 performs well and is Pareto efficient in most cases. This is particularly true
for the larger ViT families. One exception was OOD detection, where e3 performance
was somewhat inconsistent. On the other hand, while V-MoE clearly outperforms ViT in



94 Sparse-MoEs meet Efficient Ensembles

2 3

0.02

0.03

0.04

0.05

0.06

0.07

N
LL

 (l
ow

er
 is

 b
et

te
r)

CIFAR10

2.50 2.75 3.00

0.025

0.030

0.035

0.040

CIFAR10

2 3

0.2

0.3

0.4

0.5

CIFAR10-C

2 3

0.20

0.25

0.30

0.35

0.40

0.45
CIFAR100

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 L/16 1 Member 2 Members 4 Members

Figure 5.8: NLL for CIFAR10 (left), with a zoomed-in plot of the highlighted area (centre
left), CIFAR10-C (centre right), and CIFAR100 (right). The zoomed-in plot includes additional
ensemble baselines for comparison. Dashed lines show Pareto frontiers.

terms of accuracy, the uncertainty estimates can be better or worse depending on the
downstream application.

5.6 Related Work

Mixture of Experts. MoEs (Jacobs et al., 1991; Jordan and Jacobs, 1994; Chen et al.,
1999; Yuksel et al., 2012; Eigen et al., 2014) combine the outputs of different submodels,
or experts, in an input-dependent way. Sparse MoEs only select a few experts per input,
enabling to greatly scale models while keeping the prediction time constant. Sparse MoEs
have been used to build large language models (Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2022). Recently, sparse MoEs have been also successfully applied to
vision problems (Riquelme et al., 2021; Yang et al., 2021; Lou et al., 2021; Xue et al.,
2022). Our work builds on the V-MoE architecture proposed by Riquelme et al. (2021),
which is based on the ViT (Dosovitskiy et al., 2021) and showed improved performance
for the same computational cost as ViT. We explore the interplay between sparse MoEs
and ensembles and show that V-MoEs benefit from ensembling, by improving their
predictive performance and robustness. While previous work studied ViT’s calibration
and robustness (Minderer et al., 2021; Fort et al., 2021; Paul and Chen, 2022; Mao et al.,
2022), we are the first to study the robustness of V-MoE models.

Ensembles. Ensemble methods combine several different models to improve generalisa-
tion and uncertainty estimation. Ensembles achieve the best performance when they are
composed of diverse members that make complementary errors (Hansen and Salamon,
1990; Fort et al., 2019; Wenzel et al., 2020b; D’Angelo and Fortuin, 2021; Lopes et al.,
2022). However, standard ensembles are inefficient since they consist of multiple models,



5.7 Summary 95

each of which can already be expensive. To reduce test time, Xie et al. (2013) and Hinton
et al. (2015); Tran et al. (2020); Nam et al. (2021) use compression and distillation
mechanisms, respectively. To reduce training time, ensembles can be constructed with
cyclical learning-rate schedules to snapshot models along the training trajectory (Huang
et al., 2017; Zhang et al., 2019). Our work builds on BE (Wen et al., 2020) where a
single model encapsulates an ensemble of networks, a strategy also explored by Lee et al.
(2015); Havasi et al. (2020); Antorán et al. (2020); Dusenberry et al. (2020a); Ramé et al.
(2021). Wenzel et al. (2020b) extended BE to models with different hyperparameters.

Bayesian Neural Networks. Bayesian Neural Networks (BNNs) are an alternative
approach to deep ensembles for uncertainty quantification in neural networks. In a
BNN the weights are treated as random variables and the uncertainty in the weights is
translated to uncertainty in predictions via marginalisation. However, because the weight
posterior is intractable for NNs, approximation is required. Popular approximations
include Variational Inference (VI) (Hinton and van Camp, 1993; Graves, 2011; Blundell
et al., 2015), the Laplace approximation (MacKay, 1992; Ritter et al., 2018), and MC
Dropout (Gal and Ghahramani, 2016). However, many of these approximations make
restrictive mean-field assumptions, which hurt performance (Foong et al., 2020; Coker
et al., 2022; Fortuin et al., 2022b). Unfortunately, modelling full weight correlations
for even small ResNets—with relatively few parameters compared to the ViT models
considered here—is intractable (Daxberger et al., 2021b).

5.7 Summary

Our study of the interplay between sparse MoEs and ensembles has shown that these
two classes of models are complementary. Efficient ensemble of experts exemplifies those
mutual benefits—as illustrated by its accuracy, NLL, few-shot learning, robustness, and
uncertainty calibration improvements over several challenging baselines in a range of
benchmarks. We have also provided the first, to the best of our knowledge, investigation
into the robustness and uncertainty calibration properties of V-MoEs—showing that
these models are robust to dataset shift and are able to detect OOD examples.

In the next chapter, we will move away from the problem of uncertainty estimation
in discriminative models and instead tackle data efficiency for deep generative models.
We will approach this problem by building stronger inductive biases—specifically, about
the symmetry transformations present in the data—into our models.





Chapter 6

A Generative Model of Symmetry
Transformations

In this chapter, we are interested in improving the poor data efficiency of deep generative
models. To this end, we propose a generative model that explicitly encodes the (partial)
symmetries in the data. Our contributions are:

1. In Section 6.2, we propose a Symmetry-aware Generative Model (SGM). The SGM’s
latent representation is separated into an invariant component x̂ and an equivariant
component η. The latter, η, captures the symmetries in the data, while x̂ captures
none. We recover x by applying a parameterised transformation, x = Tη(x̂). We
call x̂ a prototype since each x̂ can produce arbitrarily transformed observations;
see Figure 6.1.

2. In Section 6.2.1, we propose a two-stage algorithm for learning our SGM: first learn-
ing x̂ using a self-supervised approach and then learning η via maximum likelihood.
Importantly, this does not require modelling the distribution of prototypes p (x̂),
allowing the procedure to remain tractable even for complex data.

3. We discuss several potential pitfalls of training our SGM in Section 6.3. This
discussion includes important practical suggestions as well as intuition for several
of our design decisions.

4. Section 6.4 provides experimental validation for our method. First, we verify
experimentally that our SGM completely captures affine and colour symmetries.
Then we demonstrate that the test Marginal Log Likelihood (MLL) of a Variational
Autoencoder (VAE) can be improved by building in an SGM. Additionally, unlike
the base VAE, explicitly modelling symmetries makes our model’s performance



98 A Generative Model of Symmetry Transformations

x̂

Tη(x̂)

x

η

p (η | x̂)

p (x | x̂)

Figure 6.1: Left: An example of a symmetry-aware generative process which we aim to
model in this chapter. A prototype x̂ ( ) is transformed by Tη into an observation x ( , ,

). The transformation—e.g., rotation—is parameterised by η—e.g., an angle. Right: The
corresponding orbit—i.e., the set of all possible instances of x that can result from applying
Tη—with a few elements shown. Under this generative process, the prototype is an arbitrary
orbit element. Each element in the orbit has a probability p (x | x̂) induced by p (η | x̂). E.g.,
for handwritten ‘3’s, we expect digits in an upright orientation with some rotation around, say
±40◦, corresponding to natural variations in handwriting.

robust to deleting half of the dataset (in an independent and identically distributed
fashion).

This chapter is based on “A Generative Model of Symmetry Transformations” (Alling-
ham et al., 2024). This paper was written with Bruno Mlodozeniec, Shreyas Padhy, Javier
Antorán, David Krueger, Richard Turner, Eric Nalisnick, and José Miguel Hernández-
Lobato. I led the project and was heavily involved with every aspect of the work,
including ideation, exploration, coding, evaluation and presentation of the results, as
well as writing the paper. David, Richard, Eric and Miguel gave high-level guidance and
feedback. Shreyas and Bruno were instrumental in the coding and evaluation. Javier,
Bruno, and Eric provided large contributions to the ideation and writing.

6.1 Motivation

Many physical phenomena exhibit symmetries; for example, many of the observable
galaxies in the night sky share similar characteristics when accounting for their different
rotations, velocities, and sizes. Hence, if we are to represent the world with generative
models, they can be made more faithful and data-efficient by incorporating notions
of symmetry. This has been well-understood for discriminative models for decades.
Incorporating inductive biases such as invariance or equivariance to symmetry transfor-
mations dates back (at least) to ConvNets, which incorporate translation symmetries



6.2 Symmetry-aware Generative Model (SGM) 99

x

x̂

η ω

ψ

N

generative
inference

implicit

invariant
equivariant

Figure 6.2: SGM graphical model. The implicit edges denote that x̂ is fully specified by η
and x—since x̂ = T −1

η (x)—and thus only η needs to be inferred given and observation x.

(LeCun et al., 1989)—and can be extended to reflection and rotation (Cohen and Welling,
2016)—and more recently, transformers, with permutation symmetries (Lee et al., 2019).

In many cases, it is not known a priori which symmetries are present in the data.
Learning symmetries in discriminative modelling is an active field of research (Nalisnick
and Smyth, 2018; van der Wilk et al., 2018; Benton et al., 2020; Schwöbel et al., 2022;
van der Ouderaa and van der Wilk, 2022; Rommel et al., 2022; Romero and Lohit, 2022;
Immer et al., 2022, 2023; Miao et al., 2023; Mlodozeniec et al., 2023). However, in these
works—which focus on invariant discriminative models—the label is often assumed to be
invariant, and thus, the symmetry information can be removed rather than explicitly
modelled. On the other hand, a generative model must capture the factors of variation
corresponding to the symmetry transformations of the data. Doing so can provide benefits
such as better representation learning—by disentangling symmetry from other latent
variables (Antorán and Miguel, 2019)—and data efficiency—due to compact encoding
of factor(s) of variation corresponding to symmetries. Furthermore, learning about
underlying symmetries in data could be used for scientific discovery.

6.2 Symmetry-aware Generative Model (SGM)

Consider a dataset of observations {xn}Nn=1 on a space X , and a collection {Tη} of
transformations Tη : X → X parameterised by transformation parameters η ∈ H ⊆ Rdη .
We assume {Tη}η∈H (abbreviated {Tη}) form a group. Loosely, our aim is to model the
distribution over transformations present in the data.

To do so, we model the distribution p (x) by decomposing it into two disparate parts:
(1) a distribution over prototypes and (2) a distribution over parameters controlling
transformations to be applied to a prototype. Concretely, we specify our generative



100 A Generative Model of Symmetry Transformations

model as follows (also depicted in Figure 6.2):

x̂ ∼ p (x̂), (6.1)

η ∼ pψ(η | x̂), (6.2)

x = Tη(x̂). (6.3)

That is, the SGM assumes that each observation x is generated by applying a transfor-
mation Tη—parameterised by a latent variable η—to a latent prototype x̂. Since x̂, by
assumption, contains no information about the symmetries in the data, pψ(η | x̂) must
model the distribution over the transformations Tη present in the data.

Why would we expect specifying p (x) in this way to be useful? Firstly,
our SGM allows us to query a distribution over naturally occurring transformations
pψ(η | x̂ = T −1

η (x)) for any input x, given the matching prototype x̂ := T −1
η (x). Secondly,

we expect our SGM to align with the true physical process of generating the data for
many interesting datasets. As an illustrative example, when a person writes a digit, they
first decide what kind of digit to write—e.g., the prototype could be an upright ‘3’—but
when they put pen to paper, the digit they pictured is transformed due to various factors
governing their handwriting1. Similarly, when a photographer captures an object, the
photograph is also a function of latent factors of variation, such as lighting, the camera
lens, camera shake, etc.

Figure 6.3: Orbits due to hori-
zontal shift transformations. Each
point (x1, x2) is transformed via Tη :
(x1, x2) 7→ (x1, x2)+(η, 0). Thus, hor-
izontal lines form disjoint orbits in
which any point can be transformed
into any other point on the same line
but not on another line. For each line,
we can choose an arbitrary prototype
( ) from which all other points on the
line can be reached via Tη.

x̂ can informally be considered a canoni-
cal/reference example with no transformation ap-
plied to it. More precisely, we require that for any
orbit of an element x—defined as the set of elements
in X which x can be mapped to by a transforma-
tion in {Tη}—there is exactly one prototype in the
orbit. Figure 6.1 depicts an example orbit—a set
{ , , , ...} of all rotated variants of a ‘3’—with
a unique prototype.

Why do we want a group? Having the trans-
formations {Tη} be a group simplifies things, since
{Tη} will then naturally partition the space X into

1The alignment between our SGM and the data-generating process can be less clear-cut. E.g., a
person is unlikely to “imagine” the same prototype for both a ‘6’ or a ‘9’—two separate digits that can
often be transformed into one another with a rotation.



6.2 Symmetry-aware Generative Model (SGM) 101

x
5

Tη(x)p (ηrnd) ηrnd
-50◦ fω(x)xrnd

5

T −1
η (x)ηxrnd

-80◦

mse (·, ·)

x̂′5

fω(x) T −1
η (x)ηx

-30◦
x̂

5 LSSL

Figure 6.4: Self-supervised symmetry learning. We encourage fω(x) to be equivariant by
mapping x and a randomly transformed x to the same x̂. Gray text shows examples for each
variable in the graph. Note that x̂ and xrnd may not appear in the dataset; see Figure 6.1.

(disjoint) orbits. Within each orbit, every element can be transformed into one another
with a transformation in {Tη}. As an example of such a partition, if our collection of
transformations were horizontal shifts Tη : x 7→ x+ (η, 0) acting on a point x ∈ R2, then
the different orbits will correspond to all points on a given horizontal line; see Figure 6.3.
Therefore, if we have chosen a unique prototype for each orbit and {Tη} forms a group,
any two elements x,x′ ∈ X will have the same prototype if and only if they can be
transformed into one another.

In Section 6.2.1, we describe a method for learning a transformation inference function
fω : X → H, with parameters ω, that for x ∈ X returns transformation parameters
η ∈ H as η = fω(x). These map x to a prototype x̂ := T −1

η (x) that generates x := Tη(x̂)2.
We then apply standard generative modelling tools to learn p (x̂, η) = p (x̂)pψ(η | x̂)
given the generated data pairs {x̂n,ηn}Nn=1.

6.2.1 Learning

We now discuss learning for the two NNs required by our model, starting with fω(x)

and then tackling pψ(η | x̂). In Section D.1 we discuss connections between our learning
algorithm and MLL optimisation using an Evidence Lower BOund (ELBO).

Transformation inference function. For T −1
η , with η given by fω, to map x to

a prototype x̂, it must, by definition, map all elements in any given orbit to the same
element in that orbit. In other words, the output of T −1

fω(x)(x) should be invariant to
transformations Tη′ of x:

T −1
fω(x)(x) = T −1

fω(Tη′ (x)) (Tη′(x)) , ∀η′ ∈ H. (6.4)

2The transformation is not necessarily unique.



102 A Generative Model of Symmetry Transformations

To learn such a function, we optimise for this property directly. To this end, we sample
transformation parameters ηrnd from some distribution over parameters p(ηrnd). This
allows us to get random samples xrnd := Tηrnd(x) ∈ X in the orbit of any given element
x ∈ X . Since we want full (i.e., strict) invariance, p (ηrnd) must have support on the
entire orbit (van der Ouderaa and van der Wilk, 2022). We then learn an equivariant
fω via a Self-Supervised Learning (SSL) scheme inspired by methods like BYOL (Grill
et al., 2020) and, more directly, BINCE (Dubois et al., 2021). For example, we could use
the objective illustrated in Figure 6.4:∥∥∥T −1

fω(xrnd)
(xrnd)− T −1

fω(x)(x)
∥∥∥2
2
, xrnd = Tηrnd(x), ηrnd ∼ p(ηrnd). (6.5)

Our actual objective differs slightly. Since Tη′(x′) = Tη′′(x′′) implies x′ = T −1
η′ ◦ Tη′′(x′′),

we instead use ∥∥∥Tfω(x) ◦ T −1
fω(xrnd)

(xrnd)− x
∥∥∥2
2
. (6.6)

This change allows us to reduce the number of small discretisation errors introduced
with each transformation application by replacing repeated transformations with a single
composed transformation; see Section 6.3.1 for further discussion. Our SSL loss is given
in Line 1 of Algorithm 1.

Generative model of transformations. Once we have a prototype inference func-
tion, we simply learn pψ (η | x̂) by maximum likelihood on the created data pairs{
fω(xi), T −1

fω(xi)
(xi)

}
. This is shown in Line 8 of Algorithm 1. While we need to

specify the kinds of symmetry transformations Tη we expect to see in the data, by
learning pψ(η | x̂) the model can learn the degree to which those transformations are
present in the data. Thus, we can specify several potential symmetry transformations
and learn that some are absent in the data. Furthermore, the required prior knowledge
(the support of p (ηrnd)) is small compared to what our SGM can learn (the shapes of
the distributions for each of the present transformations).

Since we are primarily interested in using the model to (a) inspect the distribution
over naturally occurring transformations for a given element x, and (b) resample new
“naturally” augmented versions of the element, we do not need to learn p (x̂). We can
do (a) by querying p (η | x̂ = x̂) for x̂ := T −1

fη(x)
(x), and we can do (b) by sampling

η ∼ p (η | x̂) and transforming the x̂ to get x := Tη (x̂). Of course, if one wanted to
sample new prototypes, one could fit pθ(x̂) using, e.g., a VAE or Normalising Flow (NF).



6.3 Further Intuitions and Motivations 103

Algorithm 1 Learning
Require: initial parameters ωinit & ψinit, dataset D
1: function ssl_loss(x,ω)
2: ηx ← fω (x)
3: ηrnd ∼ p (ηrnd)
4: xrnd ← Tηrnd(x)
5: ηxrnd ← fω (xrnd)

6: x′ ← Tηx ◦ T −1
ηxrnd

(xrnd)

7: output mse(x,x′)
8: function mle_loss(x,ω,ψ)
9: ηx ← fω (x)

10: x̂← T −1
ηx (x)

11: output − log pψ (ηx | x̂)
12: ω, ψ ← ωinit, ψinit

13: while ω not converged do
14: X ← next_batch(D)
15: update ω with ∇ω 1

B

∑B
b=1 ssl_loss(Xb,ω)

16: while ψ not converged do
17: X ← next_batch(D)
18: update ψ with ∇ψ 1

B

∑
b mle_loss(Xb,ω,ψ)

19: output ω, ψ

Not needing to learn p (x̂) greatly simplifies training for complicated datasets that would
otherwise require a large generative model, an observation made by Dubois et al. (2021).

6.3 Further Intuitions and Motivations

In this section, we begin by providing intuition for practical considerations involved with
training our model. We then provide motivation for several of our modelling choices.

6.3.1 Practical Considerations

Training our SGM, while simple, has potential pitfalls in practice. We discuss the key
considerations here and provide further recommendations in Section D.2.

Working with transformations. Repeated application of transformations—e.g.,
in Figure 6.4—can introduce unwanted artefacts such as blurring. For many useful
transformations, we can often compose transformations before applying them to the
input. For affine transformations of images, for example, we can directly multiply affine-



104 A Generative Model of Symmetry Transformations

transformation matrices corresponding to the parameters η. More generally, if there is
some representation of the transformation parameters T (η) where composition can be
performed—e.g., as matrix multiplication Tη2 ◦ Tη1 = T ′

T (η2)T (η1)
, in the case where T is

a group representation—then we recommend composing transformations in that space
to minimize the number of applications. Additionally, NN architectures must be able
to learn the equivariant mapping from x to η. For example, using a standard CNN to
represent a function that is (approximately) equivariant to continuous rotations would
require many convolutional filters (Maile et al., 2023). Finally, one might notice that it is
possible to remove the T −1

η operations from both paths of the SSL objective in Figure 6.4,
and still have a valid objective (in H-space rather than X -space). However, the X -space
version is preferred since different parameters η1,η2 can map to the same transformed
element Tη1(x) = Tη2(x). E.g., consider rotations transformations applied to a various
shapes, for a square T0◦ ≡ T90◦ ≡ T180◦ ≡ T270◦ all map to the same transformed image,
and an H-space objective incorrectly penalises differences of ±n× 90◦ in η values.

Partial invertibility. In many common settings, transformations are not fully in-
vertible. We encounter two such issues when working with affine transformations of
images living in a finite, discrete coordinate space. Firstly, affine transformations are
only approximately invertible in the discrete space due to the information loss when
interpolating the transformed image onto a discrete grid. Thus, while only a single
prototype x̂ exists for any x, it may not be clear what the correct prototype is. Secondly,
transformations can cause information loss due to the finite coordinate space (e.g., by
shifting the contents of the image out-of-bounds3). We prevent significant information
loss by augmenting the SSL loss in Line 1 of Algorithm 1 with an invertibility loss

Linvertibility(ω) = mse
(
x, T −1

fω(x)

(
Tfω(x) (x)

))
. (6.7)

Instead, if appropriate bounds are known a priori, we can constrain η directly with tanh,
scale, and shift bijectors.

Learning pψ(η | x̂) with imperfect inference. In practice, our transformation infer-
ence network fω(x) will not be perfect; see Figure 6.10. Even after training, there may be
small variations in the prototypes x̂ corresponding to different elements in the orbit of x.
To make pψ (ηx | x̂) robust to these variations, we train it with prototypes corresponding
to randomly transformed training datapoints. In other words, we implement the MLE

3This can occur in practice, since our SSL objective—which aims to make prototypes as similar as
possible—can trivially be minimised by removing all of the contents of an image.



6.3 Further Intuitions and Motivations 105

x x̂ p (η |x, x̂)
8 8 0.5 · δ(η− 0◦) + 0.5 · δ(η− 180◦)
8 8 0.5 · δ(η− 30◦) + 0.5 · δ(η+ 150◦)
8 8 0.5 · δ(η+ 30◦) + 0.5 · δ(η− 150◦)

(a) True distribution for η given x and x̂.

8

8

8

8

8

8

0◦

η | 8

(b) Simple pψ(η | x̂)

8

8

8

8

8

8

0◦

η | 8

(c) Flexible pψ(η | x̂)

Figure 6.5: Idealised examples of simple and flexible learned distributions over angles pψ(η | x̂)—
—given the true distribution p (η | x̂) =

∑
x∈{ 8,...,8,...,8 } p (η |x, x̂)— . Rotation is

measured w.r.t. the positive y-axis.

objective in Line 8 of Algorithm 1 as log pψ (ηx | x̂′), where x̂′ = T −1
fω(Tηrnd (x))

(Tηrnd(x)) as
in our SSL objective. We find that averaging the loss over multiple samples—e.g., 5—of
ηrnd is beneficial.

6.3.2 Modelling Choices

We now motivate some of the design choices for our SGM by means of illustrative
examples. In each case, we assume that Tη is counter-clockwise rotation; thus, η is the
angle.

1. The distribution pψ(η | x̂) is implemented as a NF. Consider a dataset of
‘8’s rotated in the range −30◦ to 30◦: { 8, . . . , 8, . . . , 8 }. Let us assume that the
prototype is ‘8’. Figure 6.5a shows p (η |x, x̂), the true distribution for η given x and
x̂, for several observations, under the data generating process. These distributions are
(sums of) deltas because only certain values of η will transform x̂ into x. Because ‘8’ is
symmetric, p (η |x, x̂) is the sum of two deltas. Figures 6.5b and 6.5c compare idealised
examples of the learned pψ(η | x̂)—given a simple uni-modal Gaussian family and a
more flexible bi-modal mixture-of-Gaussian family—with the aggregate true distribution
p (η | x̂) =∑

x∈{ 8,...,8,...,8 } p (η |x, x̂). Here, the simple unimodal distribution is clearly
worse than the bimodal distribution due to the large amount of probability mass being
wasted on angles with low density under the true data-generating process. Of course, one
might argue that the bi-modal distribution is also not flexible enough. Furthermore, the
definition of ‘flexible enough’ will be problem-specific. We solve this problem by using
NFs, which can match a wide range of distributions.



106 A Generative Model of Symmetry Transformations

x x̂ p (η |x, x̂)
2 2 δ(η− 0◦)
2 2 δ(η− 30◦)
2 2 δ(η+ 30◦)
8 8 0.5 · δ(η− 0◦) + 0.5 · δ(η− 180◦)
8 8 0.5 · δ(η− 30◦) + 0.5 · δ(η+ 150◦)
8 8 0.5 · δ(η+ 30◦) + 0.5 · δ(η− 150◦)

(a) True distribution for η given x and x̂.

η

(b) η

η | 2 η | 8

(c) η | x̂

Figure 6.6: Idealised examples of learned distributions over angles pψ(·)— —with and
without dependence on η, given the true distribution p (·)— .

2. The transformation parameters η depend on the prototype x̂. Consider
a dataset of ‘2’s and ‘8’s rotated in the range −30◦ to 30◦: { 2, . . . , 2, . . . , 2 , 8, . . . ,
8, . . . , 8 }, with prototypes ‘2’ and ‘8’. Figure 6.6a shows p (η |x, x̂), the and example
of a true distribution over η, for several observations. Figures 6.6b and 6.6c compare
idealised examples of learned distributions over η and η | x̂. Without dependence on x̂,
the model must place probability mass between −150◦ and 150◦, in order to capture the
symmetries of the ‘8’s, however this results invalid digits—such as {

2
, 2,

2
}—which do

not come from true data distribution. On the other hand, when η depends on x̂, this
does not occur because the distribution conditioned on the prototype for the ‘2’s only
needs to place mass in [−30◦, 30◦].

3. The prototype x̂ is fully invariant to transformations of x. Models such
as CNNs are most useful when we know a priori which symmetries are present in the
data. However, in many cases, this must be learned. In the case of handwritten digit
recognition, we know that the model should be invariant to some amount of rotation
since people naturally write with some variation in angle. But a model that is invariant
to rotations in the full range [−180◦, 180◦] might be unable to distinguish between ‘6’
and ‘9’. Thus, in the literature for learning invariances in the discriminative setting, it
is common to learn partially invariant functions that capture some degree of invariance
(van der Wilk et al., 2018; Benton et al., 2020; van der Ouderaa and van der Wilk, 2022).
However, as we will now demonstrate, this approach is unsuitable for our SGM, as it
breaks our assumption that x̂ contains no information about the symmetries in the data.

Consider a dataset of ‘2’s rotated in the range −30◦ to 30◦: { 2, . . . , 2, . . . , 2 }.
Figure 6.7a shows predicted prototypes and the corresponding distributions over η for
several observations. There are three cases: (a) a fully-invariant x̂, i.e., there is a single



6.4 Experiments 107

Full Partial None

x x̂ p (η |x, x̂) x̂ p (η |x, x̂) x̂ p (η |x, x̂)
2 2 δ(η− 0◦) 2 δ(η+ 15◦) 2 δ(η− 0◦)
2 2 δ(η− 30◦) 2 δ(η− 15◦) 2 δ(η− 0◦)
2 2 δ(η+ 30◦) 2 δ(η− 0◦) 2 δ(η− 0◦)

(a) True p (η | x̂) with different degrees of invariance in x.

η | 2

(b) Full

η | 2 η | 2

(c) Partial

η | ·

(d) None

Figure 6.7: Examples of learned distributions over angles pψ(η | x̂)— / —with different
amounts of invariance in the prototype x̂, given the true p (η | x̂)— .

prototype, (b) a partially-invariant x̂, for which there are two prototypes in this example,
and (c) a non-invariant x̂, which takes the partially-invariant case to the extreme and
has as many prototypes as observations. In the partially-invariant and non-invariant
cases, we can get multiple prototypes rather than a single unique prototype per orbit,
which is invalid under the generative model of the data. As a result, pψ(η | x̂) does
not represent the distribution of naturally occurring transformations of x̂ in the data.
This is illustrated in Figures 6.7b to 6.7d, which show idealized examples of the learned
pψ(η | x̂) in each case. While the distribution in Figure 6.7b matches the distribution of
transformations in the dataset, in Figures 6.7c and 6.7d we see that the distributions
corresponding to non-unique prototypes do not.

To illustrate why this is a problem, let us say we would like to probe the probability of
a particular transformed variant of an observed example. For example, given an example

of a digit ‘3’, we want to know the probability of observing , that digit rotated by
−90◦. Assuming we can find a prototype x̂ we would like p (η | x̂ = x̂) to represent all
naturally occurring augmentations. Unless x̂ is unique, this won’t necessarily be the case,
as illustrated in Figure 6.7.

6.4 Experiments

In Section 6.4.1, we explore our SGM’s understanding of the symmetries in a dataset. We
show that it produces valid prototypes, and then given those prototypes that it generates



108 A Generative Model of Symmetry Transformations

plausible samples from the data distribution. Then, in Section 6.4.2, we leverage our
SGM to improve data-efficiency and robustness in deep generative models.

Here, we conduct experiments using three datasets—dSprites (Matthey et al., 2017),
MNIST, and GalaxyMNIST (Walmsley et al., 2022)—and two kinds of transformations—
affine and colour. Results for PatchCamelyon (Veeling et al., 2018) are in Section D.5.
In Section 6.4.1, when working with MNIST under affine transformations, we add a
small amount of rotation (in the range[−15◦, 15◦]) to the original data for visualisation
purposes. For MNIST under colour transformations, we first convert the grey-scale
images to colour images using only the red channel. We then add a random hue rotation
in the range [0, 0.6π] and a random saturation multiplier in the range [0.6, 0.9]. In the
case of dSprites, we carefully control the rotations, positions, and sizes of all of the sprites.
For example, in the case of the heart sprites, we have removed the rotations and set the
y-positions to be bimodal in the top and bottom of the images. Further details about
the dSprites setup, as well as all other experimental details, can be found in Section D.3.

We focus on learning affine transformations (shifting, rotation, and scaling) as they
are expressive while still being a group that is easy to work with. We also learn colour
transformations (hue, saturation, and value). See Section D.3.7 for details about how we
parameterise Tη in both cases.

6.4.1 Learning Symmetries

Exploring transformations and prototypes. Figure 6.8 shows that for both datasets
and kinds of transformations we consider, our SGM produces close-to-invariant prototypes
as well as realistic “natural” examples that are almost indistinguishable from test examples.
There are several illustrative examples which bear further discussion. The heart sprites
in Figure 6.8a show that our SGM was able to learn the absence of a transformation
(namely rotation) in the dataset. As expected, all of the prototypes for the sprites of
the same shape are the same, since these shapes are in the same orbit as one another.
This behaviour is also demonstrated for MNIST digits in Figures D.6 and D.7. The ‘6’,
‘8’, and ‘9’ digits in Figure 6.8b demonstrate the ability of our SGM to learn bimodal
distributions (on rotation in this case). The third ‘7’ in the figure is interesting because
our SGM has decided it looks more like a ‘2’.

Flexibility is important. In η, each dimension corresponds to a different transfor-
mation. We refer to pψ(ηi |x) as the marginal distribution of a single transformation
parameter. Figure 6.9 shows these marginal learnt distributions for several digits from
Figure 6.8b. We see that each of the parameters has its own range and shape. For



6.4 Experiments 109

(a) dSprites under affine transformations

(b) MNIST under affine transformations

(c) MNIST under colour transformations

(d) GalaxyMNIST under affine and colour transformations

Figure 6.8: Top: samples from the test set. Mid: prototypes for each test example. Bot:
resampled versions of each test example given the prototype. Prototypes for examples from the
same orbit (and in some cases from distinct but similar orbits) match (e.g., their size, rotation,
etc., are similar). Resampled examples are usually indistinguishable from test examples.

rotations, which are easy to reason about, we see distributions that make sense—the
round ‘0’ has an almost uniform distribution over rotations, the ‘1’ and one of the ‘9’s
are strongly bimodal as expected. The other ‘9’, which does not look as much like an
upside-down ‘6’, has a much smaller 2nd mode. The ‘2’, which looks somewhat like an
upside-down ‘7’, is also bimodal. We see that prototypes of different sizes result in corre-
sponding distributions over scaling parameters with different ranges. Figure D.8 provides
additional examples for MNIST with colour transformations, and Figure D.9 investigates
the distributions for dSprites. These results provide experimental evidence of the need
for flexibility in the generative model for pψ(η |x), as conjectured in Section 6.3.2. We
also find significant dependencies between dimensions of η (e.g., rotation and translation
in dSprites).



110 A Generative Model of Symmetry Transformations

- 1
2

0 1
2

- 1
2

0 1
2

-π 0 π -1 0 1 -1 0 1

Figure 6.9: Left to right: test examples, their prototypes, and the corresponding marginals
pψ(ηi |x) for translation in x, translation in y, rotation, scaling in x, and scaling in y.



6.4 Experiments 111

x̂20x̂2x̂1x
10 20

# Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

se
d

A
v
er

a
g
e
‖η
‖ 2

Figure 6.10: Iterative prototype inference.
Left: starting with a test example x, we get a
prototype x̂1, then treating prototype x̂i as an
observed example we predict the next prototype
x̂i+1. Right: The average magnitude of the
transformation parameters as a function of the
number of iterations of this process.

Invariance of fω and the prototypes.
In Figure 6.10, we investigate the imper-
fections of the inference network by consid-
ering an iterative procedure in which pro-
totypes are treated as observed examples,
allowing us to infer a chain of successive
prototypes. We show several examples of
such chains, as well as the average mag-
nitude of the transformation parameters
at each iteration, normalised by the maxi-
mum magnitude (at iteration 0). The first
prototype x̂1 is most different from the pre-
vious x̂0 = x, with successive prototypes
being similar visually, and as measured by
the magnitude of the inferred transformation parameters. However, the magnitude of
the inferred parameters does not tend towards 0, but rather plateaus at around 5% of
the maximum. This highlights that, although simple NNs can learn to be approximately
invariant, there is potential to improve performance through the use of a natively invariant
architecture.

6.4.2 VAE Data Efficiency
1700

1800

15 90 180

Maximum Added Rotation Angle (◦)

800

900

1000

1100

1200

1300

Model & num. train
VAE
AugVAE
InvVAE
VAE w. aug

12500
25000
37500
50000

IW
LB

Figure 6.11: Incorporating symmetries im-
proves data efficiency. Test-set Importance
Weighted Lower Bound (IWLB) (mean and std.
err. over 3 random seeds) on rotated MNIST for
a standard VAE (w. and w.o. data aug.) and
two VAE variants that incorporate symmetries
via our SGM. Improved data efficiency is demon-
strated by better performance with less training
data and less sensitivity to added rotation.

We use our SGM to build data-efficient
and robust generative models. In Fig-
ure 6.11, we compare a standard VAE to
two VAE-SGM hybrid models—AugVAE
and InvVAE—for different amounts of
training data and added rotation of the
MNIST digits. When adding rotation, each
x in the dataset set is always rotated by the
same angle (sampled uniformly between
±θmax, the maximum added rotation an-
gle). Thus, adding rotation is not the
same as data augmentation. AugVAE is
a VAE that uses our SGM to re-sample
transformed examples, introducing data
augmentation at training time. InvVAE



112 A Generative Model of Symmetry Transformations

is a VAE that uses our SGM to convert each example x to its prototype x̂ at both
train and test time. That is, the VAE in InvVAE sees only the invariant representation
of each example. We use test-set importance-weighted lower bound (IWLB) (Domke
and Sheldon, 2018) of p (x), estimated with 300 samples of the VAE’s latent variable
z, and η for InvVAE, to compare the models. Further experimental details, such as
hyperparameter sweeps, are in Section D.3.

As expected, for the VAE ( ), as we decrease the amount of training data ( →
) or increase the amount of randomly added rotation, performance degrades. This

is because the VAE sees fewer training examples per-degree of rotation. On the other
hand, the AugVAE ( ) is more data efficient. Its performance is unaffected by reducing
the number of observations by three-quarters. Furthermore, while the performance of
AugVAE and the standard VAE are almost identical for small angles and large training
sets, the drop in performance of AugVAE for larger random rotations is significantly
smaller; AugVAE does not see fewer training examples per-degree of rotation. InvVAE
( ), which natively incorporates the inductive biases of our SGM, obtains a 500 nat
larger likelihood than the other models. Its performance is almost perfectly robust to
rotation in the dataset. Additionally, its metrics barely change (< 10%) when trained
on half the data. Finally, while the VAE with data augmentation ( ) improves on the
standard VAE for less training data, it is substantially worse in the presence of more data.
This contrasts with our AugVAE, which is almost always better. This poor performance
is because the augmentations are independent of the samples. Thus, highly rotated digits
can be rotated too much, smaller digits become too small, and digits near the image
edges are moved out of frame. This highlights the importance of augmenting data in
accordance with the true data distribution.

3500 7000

Num. Train

0

2000

4000

6000

8000

10000

12000

IW
LB

VAE
AugVAE

Figure 6.12: GalaxyMNIST
data-efficiency (3 seed mean &
std. err.).

We further validate these results with the more com-
plex GalaxyMNIST dataset and an enlarged set of both
affine and colour transformations. As with our rotated
MNIST with affine transformation results, in Figure 6.12,
we see that AugVAE ( ) outperforms the standard VAE
( ). Furthermore, we see that AugVAE is robust to train-
ing with only half of the dataset. Our SGM captures the
true data distribution with only 3500 training examples.



6.5 Related Work 113

6.5 Related Work

Learning Lie groups. Rao and Ruderman (1998); Miao and Rao (2007); Keurti et al.
(2023) learn Lie groups from sequences of transformed images in an unsupervised fashion.
Hashimoto et al. (2017) learn to represent an image as a linear combination of transformed
versions of its nearest neighbours. Dehmamy et al. (2021) use Lie algebras to define
CNNs for automatic symmetry discovery. Yang et al. (2023) use a GAN-based approach
to learn transformations of examples that leave the original data distribution unchanged,
thereby fooling a discriminator. Falorsi et al. (2019) introduce a reparameterisation trick
for learning densities on arbitrary, but known, Lie groups. Chau et al. (2022) learn a
generative model over Lie group transformations applied to prototypical images that are
themselves composed of sparse combinations of learned dictionary elements.

Learning a prototype. Kaba et al. (2023) note that symmetry-based NNs are often
constrained in their architectures. Like us, they propose to learn "canonicalization
functions" that produce prototypical representations of the data. Mondal et al. (2023)
show that such canonicalization functions can be used to make large-pre-trained NNs
equivariant and, when combined with dataset-dependent symmetry priors, do not degrade
performance. Similarly, Kim et al. (2023) learn architecture-agnostic equivariant functions
by averaging a non-equivariant function over a probabilistic prototypical input. Finally,
while not explicitly trained to produce prototypes, spatial transformer networks learn to
undo transformations such as translation, scaling, and rotations (Jaderberg et al., 2015).

Data augmentations and symmetries. Prior work makes several connections be-
tween data augmentation and symmetries relevant to our findings. Bouchacourt et al.
(2021b) show that invariances in the model tend to result from natural variations in
the data rather than data augmentation or model architecture. This supports our
approach of learning data augmentation from the data and our architecture-agnostic
self-supervised invariance learning method. Balestriero et al. (2022); Miao et al. (2023);
Bouchacourt et al. (2021b) show that learned symmetries (i.e., data augmentation) should
be class-dependent, much like our transformations are prototype-dependent.

Symmetry-aware latent spaces. Encoding symmetries in latent space is well-studied.
Higgins et al. (2018) posit that symmetry transformations that leave some parts of the
world invariant are responsible for exploitable structure in any dataset. Thus, agents
benefit from disentangled representations that separate out these transformations. Winter
et al. (2022) split the latent space of an auto-encoder into invariant and equivariant



114 A Generative Model of Symmetry Transformations

partitions. However, they rely on in- and equivariant NN architectures, contrasting
with our self-supervised learning approach. Furthermore, they do not learn a generative
model—they reconstruct the input exactly—thus, they cannot sample new observations
given a prototype. Xu et al. (2021) propose group equivariant subsampling layers that
allow them to construct autoencoders with equivariant representations. Shu et al. (2018)
propose an autoencoder whose representations are split such that the reconstruction of
an observation is decomposed into a “template” (much like our prototypes) and a spatial
deformation (transformation).

In the generative setting, Louizos et al. (2016) construct a VAE with a latent space
that is invariant to pre-specified sensitive attributes of the data. However, these sensitive
attributes are observed rather than learned. Similarly, Aliee et al. (2023) construct a
VAE with a partitioned latent space with a component that is invariant to spurious
factors of variation in the data. Bouchacourt et al. (2018); Hosoya (2019) learn VAE
with two latent spaces—a per-observation equivariant latent and an invariant latent
shared across grouped examples. Other works have constructed rotation equivariant
(Kuzina et al., 2022) and partitioned equivariant and invariant (Vadgama et al., 2022)
latent spaces. Antorán and Miguel (2019); Ilse et al. (2020) split the latent space of
a VAE into domain, class, and residual variation components. The first of which can
capture rotation symmetry in handwritten digits. Unlike us, they require class labels and
auxiliary classifiers. Keller and Welling (2021) construct a VAE with a topographically
organised latent space such that an approximate equivariance is learned from sequences
of observations. In contrast to the works above, Bouchacourt et al. (2021a) argue that
learning symmetries should not be achieved via a partitioned latent space but rather
by learning equivariant operators that are applied to the whole latent space. Finally,
while Nalisnick and Smyth (2017) do not learn symmetries, their information lower
bound objective is reminiscent of several works above—and our own, see Section D.1—in
minimising the mutual information between two quantities when learning a prior.

Self-supervised Equivariant Learning Dangovski et al. (2022) generalise standard
invariant SSL methods to produce representations that can be either insensitive (invariant)
or sensitive (equivariant) to transformations in the data. Similarly, Eastwood et al. (2023)
use a self-supervised learning approach to disentangle sources of variation in a dataset,
thereby learning a representation that is equivariant to each of the sources while invariant
to all others.



6.6 Summary 115

6.6 Summary

We have presented a Symmetry-aware Generative Model (SGM) and demonstrated that
it is able to learn, in an unsupervised manner, a distribution over symmetries present in
a dataset. This is done by modelling the observations as a random transformation of an
invariant latent prototype. This is the first such model we are aware of. Building generative
models that incorporate this understanding of symmetries results in significantly improved
MLLs and robustness to data sparsity. This is exciting in the context of modern generative
models, which are close to exhausting all of the data on the internet.

In the next, and final, chapter of this thesis, we will conclude by briefly summarising
the main findings and contributions from each chapter, as well as providing suggestions
for future work.





Chapter 7

Conclusion

In this thesis, we have asked the question, “How can probabilistic approaches be used to
improve deep learning?” In particular, we have focused on two problems

1. uncertainty estimation for discriminative NNs (Chapters 3, 4 and 5), and

2. data-efficiency in deep generative models (Chapter 6).

Our first finding, presented in Chapter 3, is that Bayesian inference can be used
to infer the depth of a neural network. This uncertainty over the depth of the NN
can be translated into calibrated predictive uncertainty and improved robustness of the
network. Depth uncertainty can also be applied to neural architecture search and active
learning. However, we observed that providing high-quality uncertainty estimates relies
on having an over-parameterised NN, since the network must be able to fit multiple
diverse explanations of the data.

Secondly, in Chapter 4, we saw that weight-space Bayesian inference for modern neural
networks can result in calibrated predictive uncertainty estimates—that are competitive
with state-of-the-art baselines—despite the challenge of scaling to many weights. The
key insight is that rather than applying poor approximations to all of the weights, one
should instead apply expressive approximate inference to a small subset of the weights.
In particular, we have shown that capturing correlations between weights is crucial to
obtaining calibrated uncertainty estimates. Interestingly, crude approximations can be
applied when selecting the subset. This observation suggests the importance of carefully
considering how and where we apply approximations in our Bayesian inference schemes.

In Chapter 5, we showed that carefully implemented efficient ensembling schemes
provide Pareto-efficient models on the uncertainty calibration vs. compute cost frontier
of very large Mixture-of-Expert models. This is a potentially surprising observation



118 Conclusion

for two reasons. Firstly, there is no Bayesian inference involved—just marginalisation.
Secondly, because ensembles and sparse Mixture-of-Expert models have several similar
properties, it was not obvious that they are complementary when combined. However,
we have provided experimental evidence suggesting that these two classes of models are
indeed complementary. In doing so, we have also provided the first investigation into the
uncertainty calibration and robustness of V-MoEs models.

Finally, in Chapter 6, we proposed a model whose generative process converts an
invariant latent “prototype” into an observed example via a symmetry transformation.
This generative model allows us to learn which symmetries are present in a dataset. We
found that imbuing a standard deep generative model with this knowledge about the
symmetries in the dataset leads to improved data-efficiency and importance-weighted
lower bounds on the test-set marginal log-likelihood. This result suggests that discarding
strong inductive biases about the data-generating process in favour of black-box deep
generative models is not only unnecessary but can be harmful to performance.

7.1 Future Directions

In this section, we provide suggestions for further research on each of the topics explored
in Chapters 3, 4, 5 and 6, combinations thereof, as well as the general area of probabilistic
approaches for improving deep learning.

Depth Uncertainty. The lowest-hanging fruit for further work on depth uncertainty
in NNs is its combination with traditional weight uncertainty. These techniques are
orthogonal and should provide complementary benefits when combined. Next, we note
that applying DUNs to CNNs is challenging due to the need for adaptation layers.
However, the Transformer—which has become a ubiquitous NN architecture since DUNs
were introduced—would not need such adaptation layers and is thus a natural candidate
for depth uncertainty. Another, possibly more interesting, avenue for future work follows
from the observation that DUN network weights have dual roles (1) fitting the data well,
and (2) expressing diverse predictive functions at each depth. Thus, developing methods
to ensure both roles are fulfilled could lead to large improvements.

Relatedly, we have seen that DUN performance is tied to excess model capacity; see
the ImageNet results in Figure 3.13. This phenomenon also applies to MIMO ensembles
(Havasi et al., 2020). These observations lead to two areas for further investigation. The
first, more straightforward, direction is to apply DUNs to V-MoEs. The extra capacity
provided by the experts might make it easier to learn diverse predictions at each depth.



7.1 Future Directions 119

Secondly, this suggests that a broad investigation into the role of overparameterisation
in efficient ensemble performance could be fruitful.

Taking a step back, it seems that viewing DUNs through the lens of efficient ensembling
techniques might be more pragmatic than the Bayesian perspective—since the number of
hyperparameters is at least 6 orders of magnitude larger than the number of parameters
being inferred, and from the Bayesian perspective this should cause overfitting which
does not seem to happen in practice. Thus, we suggest this alternative perspective for
those wishing to do further research into these models.

Subnetwork inference. While providing a general framework, our work on subnetwork
inference was (possibly too) focused on the linearised Laplace method in practice. As
a result, exploring subnetwork inference for other approximate inference schemes could
readily provide new insights into the generality of the method and its interaction with
different flavours of approximation. In particular, exploring full-covariance VI and HMC
are natural candidates. The community has largely ignored the former for the same
reasons that the full-covariance Laplace approximations are not used—storing covariance
matrices is prohibitively expensive. Successfully—or unsuccessfully—combining another
unimodal approximation with subnetwork inference could reveal properties about why
subnetwork linearised Laplace, and the Laplace approximation more generally, work
well. Furthermore, mean-field VI has several well-known pathologies (Foong et al.,
2020; Coker et al., 2022). But these limitations do not apply to the setting with
correlated weights, leaving the door open for subnetwork VI to perform well. HMC is an
interesting candidate because, coupled with very large compute resources, it provides
better-calibrated uncertainty estimates than other methods for inference in BNNs and
could thus be used to better understand the impact of different sources of approximation
in subnetwork inference.

Another potential avenue for investigation is a comparison with last-layer Laplace,
which has emerged as one of the strongest and most practical variants of Laplace
approximation since the subnetwork inference was introduced (Daxberger et al., 2021a).
In particular, one could investigate which weights subnetwork inference tends to target and
how much they overlap with the last layer of the NN. The Laplace approximation is not
only useful due to its well-calibrated predictive uncertainty but also its computationally
tractable model evidence, which is used for hyperparameter optimisation (Immer et al.,
2021a; Antorán et al., 2022a,b; Immer et al., 2022). However, it is currently unclear
whether or, more likely, to what extent subnetwork inference negatively impacts the
estimation of the model evidence.



120 Conclusion

Finally, it would be interesting to investigate the combination of subnetwork inference
and Kronecker-factorised covariance matrix approximations (Ritter et al., 2018; Martens
and Grosse, 2015), which should allow the linearised Laplace approximation to scale to
even larger NNs.

Sparse MoEs meet efficient ensembles. Our study of the interplay between sparse
MoEs and ensembles involves two classes of models that are famously computationally
expensive. As a result, there are two areas in which the results were limited and are
thus ripe for future work. Firstly, while our study focused on downstream fine-tuned
models, an extension to the upstream case and from-scratch training would also result
in a fruitful investigation. In fact, in Section C.8.11, we provide some promising but
preliminary results for from-scratch training. A complete study could investigate the
impact of transfer learning with matching upstream and downstream efficient ensemble
architectures as well as how well our findings hold for upstream combinations of deep
ensembles and sparse MoEs.

Secondly, our study is exclusively focused on the computer vision domain. However,
our results should be readily applicable to natural language modelling. With the growing
prevalence of sparse MoEs in NLP (Patterson et al., 2021)—and the prevalence of
NLP-based models in our daily lives—understanding and improving the robustness and
reliability of such models becomes increasingly important. Our study makes steps in
those directions and provide a solid starting point for future research.

Generative models of symmetries. The main limitation of our SGMs is that it
requires specifying the super-set of possible symmetries. Future work might relax this
requirement or explore how robust our SGMs is to even larger sets. Furthermore, care
must sometimes be taken when specifying the set of symmetries. For example, when
rotating images with “content” at the boundaries of the image; see Section D.5. This
potential issue could also be further investigated in future work. Another obvious,
but not to say unimportant, next step for this research direction is a broader set of
evaluations. Applying our SGM to learning symmetries for more datasets and with more
comprehensive classes of transformations would go a long way to demonstrating the
generality of the method. Similarly, it would be useful to show that not only VAEs but also
other generative models—such as NFs and diffusion models—benefit from incorporating
symmetries. We are also excited about using SGMs for scientific discovery, given that
the framework is ideal for probing naturally occurring symmetries present in the data.
For example, we could apply SGMs to marginalise out the idiosyncrasies of different



7.1 Future Directions 121

measuring equipment and observation geometry in radio astronomy data. Additionally,
given the success of using our SGM for data augmentation when training VAEs, it
could be applied to data augmentation in the discriminative settings and compared with
existing methods such as Benton et al. (2020); Immer et al. (2022); Miao et al. (2023).

Probabilistic approaches for improving deep learning. As we have seen in Chap-
ter 4, applying inference in weight space becomes increasingly difficult as our models get
larger, even with increasingly sophisticated approximate inference schemes. In Chapter 5,
and arguably Chapter 3, we have seen that well-calibrated uncertainty estimates can
be achieved via efficient ensembling techniques, especially for large overparameterised
models. Thus, in today’s LLM-dominated machine learning landscape, perhaps the
probabilistic machine learning community should shy away from the traditional BNN
approach of calibrated uncertainty estimation via inference in weight space. Clearly, the
Bayesian approach is still practical for “smaller” models (even those as “large” as ResNets),
and advances—e.g., in model selection and uncertainty quantification—can still be made
there. However, there are many other areas in which the probabilistic approach can
still naturally complement deep learning. Chapter 6 provided one example of building
better inductive biases into deep generative models. The fields of active learning and
experimental design provide many more examples. See Murray et al. (2021a,b) and
Barbano et al. (2022); Antorán et al. (2023), for such examples in active learning and
experimental design, respectively. Even simple uses of probabilistic thinking can be
relevant. An example, in the setting of anytime algorithms, Jazbec et al. (2023) use a
simple product-of-experts formulation to improve the anytime consistency of early-exit
NNs. As a final example, Allingham et al. (2023) use likelihood ratios and ideas from
outlier detection to do automatic prompt selection for zero-shot classifiers.





References

Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Perturbation techniques in online
learning and optimization. Perturbations, Optimization, and Statistics, 2016. (Cited
on p. 81.)

Hananeh Aliee, Ferdinand Kapl, Soroor Hediyeh-Zadeh, and Fabian J. Theis. Condition-
ally invariant representation learning for disentangling cellular heterogeneity. arXiv
preprint: 2307.00558, 2023. (Cited on p. 114.)

James U Allingham. Unsupervised automatic dataset repair. Master’s thesis, University
of Cambridge, 2018. (Cited on p. vii.)

James Urquhart Allingham and Eric Nalisnick. A product of experts approach to
early-exit ensembles. 1st ICML Workshop on Dynamic Neural Networks, 2022. (Not
cited.)

James Urquhart Allingham, Javier Antoran, Shreyas Padhy, Eric Nalisnick, and
José Miguel Hernández-Lobato. Learning generative models with invariance to sym-
metries. NeurIPS Workshop on Symmetry and Geometry in Neural Representations,
2022a. (Cited on p. 211.)

James Urquhart Allingham, Florian Wenzel, Zelda E. Mariet, Basil Mustafa, Joan
Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan,
Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, and Rodolphe Jenatton. Sparse
MoEs meet efficient ensembles. Transactions on Machine Learning Research, TMLR,
2022b. (Cited on pp. 3 and 78.)

James Urquhart Allingham, Jie Ren, Michael W Dusenberry, Xiuye Gu, Yin Cui, Dustin
Tran, Jeremiah Zhe Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt
weighting technique to improve prompt ensembling in text-image models. In Proceedings
of the 39th International Conference on Machine Learning, ICML, 2023. (Cited on
p. 121.)

James Urquhart Allingham, Bruno Mlodozeniec, Shreyas Padhy, Javier Antorán, David
Krueger, Richard Turner, Eric Nalisnick, and José Miguel Hernández-Lobato. A
generative model of symmetry transformations. Submitted to ICML, 2024. (Cited on
pp. 4 and 98.)

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. arXiv preprint: 1606.06565, 2016. (Cited
on pp. 26 and 54.)



124 References

Javier Antorán and Antonio Miguel. Disentangling and learning robust representations
with natural clustering. In 18th IEEE International Conference On Machine Learning
And Applications, ICMLA, 2019. (Cited on pp. 99 and 114.)

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth
uncertainty in neural networks. In Advances in Neural Information Processing Systems
33, NeurIPS, 2020. (Cited on pp. 3, 7, 25, 61, 65, 67, 69, 71, 74, 95, and 166.)

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Varia-
tional depth search in ResNets. 1st ICLR Workshop on Neural Architecture Search,
2020. (Not cited.)

Javier Antorán, James Urquhart Allingham, David Janz, Erik Daxberger, Eric Nalis-
nick, and José Miguel Hernández-Lobato. Linearised Laplace inference in networks
with normalisation layers and the neural g-prior. In 4th Symposium on Advances in
Approximate Bayesian Inference, AABI, 2022a. (Cited on p. 119.)

Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano,
Eric Nalisnick, and José Miguel Hernández-Lobato. Adapting the linearised Laplace
model evidence for modern deep learning. In Proceedings of the 38th International
Conference on Machine Learning, ICML, 2022b. (Cited on p. 119.)

Javier Antorán, Riccardo Barbano, Johannes Leuschner, José Miguel Hernández-Lobato,
and Bangti Jin. Uncertainty estimation for computed tomography with a linearised
deep image prior. Transactions on Machine Learning Research, TMLR, 2023. (Cited
on p. 121.)

Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint:
1701.07875, 2017. (Cited on p. 18.)

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry P. Vetrov. Pitfalls of
in-domain uncertainty estimation and ensembling in deep learning. In 8th International
Conference on Learning Representations, ICLR, 2020. (Cited on pp. 8, 17, 31, 50, 63,
67, 71, 156, 157, 165, and 166.)

Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyudov, and Dmitry P.
Vetrov. Uncertainty estimation via stochastic batch normalization. In 16th International
Symposium on Neural Networks, ISNN, 2019a. (Cited on p. 12.)

Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry P.
Vetrov. Semi-conditional normalizing flows for semi-supervised learning. arXiv preprint:
1905.00505, 2019b. (Cited on p. 21.)

Randall Balestriero, Léon Bottou, and Yann LeCun. The effects of regularization and
data augmentation are class dependent. In Advances in Neural Information Processing
Systems 35, NeurIPS, 2022. (Cited on p. 113.)

Monika Bansal, Munish Kumar, Monika Sachdeva, and Ajay Mittal. Transfer learning
for image classification using VGG19: Caltech-101 image data set. Journal of Ambient
Intelligence and Humanized Computing, 2021. (Cited on p. 171.)



References 125

Riccardo Barbano, Johannes Leuschner, Javier Antorán, Bangti Jin, and José Miguel
Hernández-Lobato. Bayesian experimental design for computed tomography with the
linearised deep image prior. arXiv preprint: 2207.05714, 2022. (Cited on p. 121.)

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint:
1308.3432, 2013. (Cited on pp. 78 and 80.)

Gregory W. Benton, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Learning
invariances in neural networks from training data. In Advances in Neural Information
Processing Systems 33, NeurIPS, 2020. (Cited on pp. 99, 106, 121, 211, and 222.)

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov,
Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan
Zhang. Dota 2 with large scale deep reinforcement learning. arXiv preprint: 1912.06680,
2019. (Cited on p. 1.)

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert,
and Francis R. Bach. Learning with differentiable perturbed optimizers. arXiv preprint:
2002.08676, 2020. (Cited on p. 81.)

Michael Betancourt. The fundamental incompatibility of scalable Hamiltonian Monte
Carlo and naive data subsampling. In Proceedings of the 31st International Conference
on Machine Learning, ICML, 2015. (Cited on pp. 12 and 73.)

Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv
preprint 1701.02434, 2017. (Cited on p. 11.)

Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Riccardo
Fogliato, Gabrielle Gauthier Melançon, Ranganath Krishnan, Jason Stanley, Omesh
Tickoo, Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian Weller, and
Alice Xiang. Uncertainty as a form of transparency: Measuring, communicating, and
using uncertainty. In AAAI/ACM Conference on AI, Ethics, and Society, AIES, 2021.
(Cited on p. 54.)

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006. (Cited
on pp. 29, 54, and 59.)

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. In Proceedings of the 31st International Conference on
Machine Learning, ICML, 2015. (Cited on pp. 10, 11, 31, 50, 56, 63, 73, and 95.)

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational
autoencoder: Learning disentangled representations from grouped observations. In
The 32nd AAAI Conference on Artificial Intelligence, AAAI, 2018. (Cited on p. 114.)

Diane Bouchacourt, Mark Ibrahim, and Stéphane Deny. Addressing the topological
defects of disentanglement via distributed operators. arXiv preprint: 2102.05623,
2021a. (Cited on p. 114.)



126 References

Diane Bouchacourt, Mark Ibrahim, and Ari S. Morcos. Grounding inductive biases
in natural images: invariance stems from variations in data. In Advances in Neural
Information Processing Systems 34, NeurIPS, 2021b. (Cited on p. 113.)

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for
high fidelity natural image synthesis. In 7th International Conference on Learning
Representations, ICLR, 2019. (Cited on p. 18.)

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Advances in Neural Information Processing Systems
33, NeurIPS, 2020. (Cited on pp. 1 and 78.)

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-
coders. In 4th International Conference on Learning Representations, ICLR, 2016.
(Cited on p. 22.)

David R. Burt, Sebastian W. Ober, Adrià Garriga-Alonso, and Mark van der Wilk.
Understanding variational inference in function-space. In 3rd Symposium on Advances
in Approximate Bayesian Inference, AABI, 2021. (Cited on pp. 13, 26, 60, and 61.)

Ho Yin Chau, Frank Qiu, Yubei Chen, and Bruno A. Olshausen. Disentangling images
with lie group transformations and sparse coding. NeurIPS Workshop on Symmetry
and Geometry in Neural Representations, 2022. (Cited on p. 113.)

Ke Chen, Lei Xu, and Huisheng Chi. Improved learning algorithms for mixture of experts
in multiclass classification. Neural Networks, 1999. (Cited on p. 94.)

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing Systems
31, NeurIPS, 2018. (Cited on p. 21.)

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte
Carlo. In Proceedings of the 30th International Conference on Machine Learning,
ICML, 2014. (Cited on p. 11.)

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint 1710.09282, 2017. (Cited on
pp. 54, 57, and 63.)

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in
the wild. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2014. (Cited on pp. 171, 173, and 188.)

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. Deep learning for classical Japanese literature. arXiv preprint:
1812.01718, 2018. (Cited on p. 161.)



References 127

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Proceedings
of the 32nd International Conference on Machine Learning, ICML, 2016. (Cited on
p. 99.)

Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, and Finale Doshi-Velez.
Wide mean-field Bayesian neural networks ignore the data. In The 25th International
Conference on Artificial Intelligence and Statistics, AISTATS, 2022. (Cited on pp. 95
and 119.)

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational
autoencoders. In Proceedings of the 34th International Conference on Machine Learning,
ICML, 2018. (Cited on p. 22.)

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
(Cited on p. 201.)

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are Bayesian. In
Advances in Neural Information Processing Systems 34, NeurIPS, 2021. (Cited on
p. 94.)

Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian
Cheung, Pulkit Agrawal, and Marin Soljacic. Equivariant self-supervised learning:
Encouraging equivariance in representations. In 10th International Conference on
Learning Representations, ICLR, 2022. (Cited on p. 114.)

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias
Bauer, and Philipp Hennig. Laplace redux - effortless Bayesian deep learning. In
Advances in Neural Information Processing Systems 34, NeurIPS, 2021a. (Cited on
pp. 73 and 119.)

Erik A. Daxberger, Eric T. Nalisnick, James Urquhart Allingham, Javier Antorán, and
José Miguel Hernández-Lobato. Bayesian deep learning via subnetwork inference. In
Proceedings of the 37th International Conference on Machine Learning, ICML, 2021b.
(Cited on pp. 3, 54, and 95.)

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In 6th
International Conference on Learning Representations, ICLR, 2018. (Cited on p. 12.)

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic
symmetry discovery with lie algebra convolutional network. In Advances in Neural
Information Processing Systems 34, NeurIPS, 2021. (Cited on p. 113.)

Marc Peter Deisenroth and Jun Wei Ng. Distributed Gaussian Processes. In Proceedings
of the 31st International Conference on Machine Learning, ICML, 2015. (Cited on
p. 35.)

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2009. (Cited on pp. 1, 73, 82, and 172.)



128 References

John S. Denker and Yann LeCun. Transforming neural-net output levels to probability
distributions. In Advances in Neural Information Processing Systems 3, NeurIPS, 1990.
(Cited on pp. 59 and 63.)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT, 2019. (Cited on p. 82.)

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop
on multiple classifier systems, 2000. (Cited on pp. 8 and 81.)

Georgi Dikov and Justin Bayer. Bayesian learning of neural network architectures. In
The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS,
2019. (Cited on pp. 14 and 50.)

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent
components estimation. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, 2015.
(Cited on pp. 19, 20, and 21.)

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
NVP. In 5th International Conference on Learning Representations, ICLR, 2017.
(Cited on pp. 13, 19, and 21.)

Justin Domke and Daniel Sheldon. Importance weighting and variational inference. In
Advances in Neural Information Processing Systems 31, NeurIPS, 2018. (Cited on
p. 112.)

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th International Conference on Learning
Representations, ICLR, 2021. (Cited on pp. 80, 82, 94, 169, 170, 171, and 183.)

Kevin Dowd. Backtesting market risk models. John Wiley & Sons, Ltd, 2013. (Cited on
p. 36.)

Simon Duane, Anthony D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
Monte Carlo. Physics letters B, 1987. (Cited on p. 11.)

Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, and Chris J. Maddison. Lossy
compression for lossless prediction. In Advances in Neural Information Processing
Systems 34, NeurIPS, 2021. (Cited on pp. 102, 103, and 212.)

John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for
stochastic optimization. SIAM J. Optim., 2012. (Cited on p. 81.)

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline
flows. In Advances in Neural Information Processing Systems 32, NeurIPS, 2019.
(Cited on pp. 21 and 215.)



References 129

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine A.
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable Bayesian
neural nets with rank-1 factors. In Proceedings of the 36th International Conference
on Machine Learning, ICML, 2020a. (Cited on pp. 13, 50, 74, 95, and 175.)

Michael W Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen
Jerfel, Katherine Heller, and Andrew M Dai. Analyzing the role of model uncertainty for
electronic health records. In Proceedings of the ACM Conference on Health, Inference,
and Learning, 2020b. (Cited on p. 78.)

Cian Eastwood, Julius von Kügelgen, Linus Ericsson, Diane Bouchacourt, Pascal Vincent,
Bernhard Schölkopf, and Mark Ibrahim. Self-supervised disentanglement by leveraging
structure in data augmentations. arXiv preprint: 2311.08815, 2023. (Cited on p. 114.)

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations
in a deep mixture of experts. In ICLR (Workshop Poster), 2014. (Cited on p. 94.)

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures
of Laplace approximations for improved post-hoc uncertainty in deep learning. arXiv
preprint: 2111.03577, 2021. (Cited on p. 74.)

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M.
Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017. (Cited on p. 1.)

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperpa-
rameter optimization at scale. In Proceedings of the 34th International Conference on
Machine Learning, ICML, 2018. (Cited on pp. 35 and 153.)

Luca Falorsi, Pim de Haan, Tim R. Davidson, and Patrick Forré. Reparameterizing distri-
butions on lie groups. In The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS, 2019. (Cited on p. 113.)

Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or depth: Deep Bayesian
neural nets do not need complex weight posterior approximations. In Advances in
Neural Information Processing Systems 33, NeurIPS, 2020. (Cited on p. 74.)

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning
Research, JMLR, 2022. (Cited on pp. 78 and 94.)

Angelos Filos, Sebastian Farquhar, Aidan N. Gomez, Tim G. J. Rudner, Zachary
Kenton, Lewis Smith, Milad Alizadeh, Arnoud de Kroon, and Yarin Gal. A systematic
comparison of Bayesian deep learning robustness in diabetic retinopathy tasks. arXiv
preprint: 1912.10481, 2019. (Cited on pp. 26, 41, 72, 74, and 158.)

Andrew Y. K. Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E. Turner.
‘In-between’ uncertainty in Bayesian neural networks. arXiv preprint: 1906.11537,
2019. (Cited on pp. 34, 35, 56, 57, 58, 65, 66, 160, and 167.)



130 References

Andrew Y. K. Foong, David R. Burt, Yingzhen Li, and Richard E. Turner. On the
expressiveness of approximate inference in Bayesian neural networks. In Advances in
Neural Information Processing Systems 33, NeurIPS, 2020. (Cited on pp. 13, 26, 54,
56, 63, 74, 95, and 119.)

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss
landscape perspective. arXiv preprint: 1912.02757, 2019. (Cited on pp. 14, 54, 74,
and 94.)

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-
distribution detection. In Advances in Neural Information Processing Systems 34,
NeurIPS, 2021. (Cited on pp. 91 and 94.)

Vincent Fortuin, Mark Collier, Florian Wenzel, James Allingham, Jeremiah Liu, Dustin
Tran, Balaji Lakshminarayanan, Jesse Berent, Rodolphe Jenatton, and Effrosyni
Kokiopoulou. Deep classifiers with label noise modeling and distance awareness.
Transactions on Machine Learning Research, TMLR, 2022a. (Not cited.)

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar
Rätsch, Richard E. Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian
neural network priors revisited. In 10th International Conference on Learning Repre-
sentations, ICLR, 2022b. (Cited on pp. 13 and 95.)

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning Representations,
ICLR, 2019. (Cited on pp. 56 and 74.)

Nicholas Frosst, Nicolas Papernot, and Geoffrey E. Hinton. Analyzing and improv-
ing representations with the soft nearest neighbor loss. In Proceedings of the 35th
International Conference on Machine Learning, ICML, 2019. (Cited on p. 28.)

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.
(Cited on p. 50.)

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Proceedings of the 32nd International Conference
on Machine Learning, ICML, 2016. (Cited on pp. 12, 26, 31, 48, 50, 67, 73, 89, 95,
153, and 180.)

Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew Gordon
Wilson. GPyTorch: Blackbox matrix-matrix Gaussian Process inference with GPU
acceleration. In Advances in Neural Information Processing Systems 31, NeurIPS,
2018. (Cited on pp. 12 and 152.)

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew Gor-
don Wilson. Loss surfaces, mode connectivity, and fast ensembling of DNNs. In
Advances in Neural Information Processing Systems 31, NeurIPS, 2018. (Cited on
pp. 8 and 50.)

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convo-
lutional networks as shallow Gaussian processes. In 7th International Conference on
Learning Representations, ICLR, 2019. (Cited on p. 12.)



References 131

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the
bias/variance dilemma. Neural computation, 1992. (Cited on pp. 8 and 81.)

Gemini Team. Gemini: A family of highly capable multimodal models, 2023. (Cited on
p. 1.)

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked
autoencoder for distribution estimation. In International Conference on Machine
Learning, 2015. (Cited on p. 17.)

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
2015. (Cited on pp. 2 and 54.)

Zoubin Ghahramani and Michael I. Jordan. Supervised learning from incomplete data via
an EM approach. In Advances in Neural Information Processing Systems 7, NeurIPS,
1993. (Cited on p. 2.)

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Model selection in Bayesian neural
networks via horseshoe priors. Journal of Machine Learning Research, JMLR, 2019.
(Cited on pp. 14 and 50.)

M. N. Gibbs and D. J. C. MacKay. Efficient implementation of Gaussian processes for
interpolation. 1996. (Cited on p. 12.)

Mark N. Gibbs. Bayesian Gaussian processes for regression and classification. PhD
thesis, University of Cambridge, 1998. (Cited on p. 59.)

Clark R. Givens, Rae Michael Shortt, et al. A class of Wasserstein metrics for probability
distributions. The Michigan Mathematical Journal, 1984. (Cited on p. 62.)

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 2007. (Cited on p. 16.)

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems 27, NeurIPS, 2014. (Cited on p. 18.)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
(Cited on p. 60.)

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. arXiv preprint: 1706.02677, 2017. (Cited on
pp. 158 and 166.)

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Du-
venaud. FFJORD: free-form continuous dynamics for scalable reversible generative
models. In 7th International Conference on Learning Representations, ICLR, 2019.
(Cited on p. 21.)



132 References

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you
should treat it like one. In 8th International Conference on Learning Representations,
ICLR, 2020. (Cited on p. 18.)

Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems 24, NeurIPS, 2011. (Cited on pp. 10, 11, 50, and 95.)

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko.
Bootstrap your own latent - A new approach to self-supervised learning. In Advances
in Neural Information Processing Systems 33, NeurIPS, 2020. (Cited on p. 102.)

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. In Proceedings of the 33rd International Conference on Machine
Learning, ICML, 2017. (Cited on pp. 54 and 86.)

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable
Bayesian deep learning methods for robust computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
(Cited on p. 79.)

Danijar Hafner, Dustin Tran, Timothy P. Lillicrap, Alex Irpan, and James Davidson.
Noise contrastive priors for functional uncertainty. In Proceedings of the 35th Conference
on Uncertainty in Artificial Intelligence, UAI, 2019. (Cited on pp. 13 and 50.)

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on
pattern analysis and machine intelligence, 1990. (Cited on pp. 8, 81, and 94.)

Tatsunori B. Hashimoto, Percy Liang, and John C. Duchi. Unsupervised transformation
learning via convex relaxations. In Advances in Neural Information Processing Systems
30, NeurIPS, 2017. (Cited on p. 113.)

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer, 2017. (Cited on p. 171.)

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek,
Balaji Lakshminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent
subnetworks for robust prediction. In 8th International Conference on Learning
Representations, ICLR, 2020. (Cited on pp. 8, 89, 90, 95, 118, 180, 181, 182, 183,
and 200.)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, ICCV, 2015. (Cited on
pp. 153, 156, 157, and 166.)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2016a. (Cited on pp. 1, 40, 67, 157, and 165.)



References 133

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, 2016b. (Cited
on p. 159.)

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. In 7th International Conference on Learning
Representations, ICLR, 2019. (Cited on pp. 41, 69, 158, 161, and 172.)

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Nat-
ural adversarial examples. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2021. (Cited on p. 172.)

James Hensman, Nicoló Fusi, and Neil D. Lawrence. Gaussian processes for big data.
In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, UAI,
2013. (Cited on pp. 12, 35, and 160.)

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In Proceedings of the 31st International
Conference on Machine Learning, ICML, 2015. (Cited on pp. 10, 26, 35, 48, 50, 55, 66,
73, 153, 160, and 167.)

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual
concepts with a constrained variational framework. In 5th International Conference
on Learning Representations, ICLR, 2017. (Cited on p. 22.)

Irina Higgins, David Amos, David Pfau, Sébastien Racanière, Loïc Matthey, Danilo J.
Rezende, and Alexander Lerchner. Towards a definition of disentangled representations.
arXiv preprint: 1812.02230, 2018. (Cited on p. 113.)

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. NeurIPS Deep Learning and Representation Learning Workshop, 2015. (Cited
on p. 95.)

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Comput., 2002. (Cited on p. 17.)

Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the 6th Annual
ACM Conference on Computational Learning Theory, COLT, 1993. (Cited on pp. 10,
11, 50, and 95.)

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems 33, NeurIPS, 2020. (Cited on
pp. 18 and 19.)

Matthew D. Hoffman, David M. Blei, Chong Wang, and John W. Paisley. Stochastic
variational inference. Journal of Machine Learning Research, JMLR, 2013. (Cited on
p. 10.)



134 References

Haruo Hosoya. Group-based learning of disentangled representations with generalizability
for novel contents. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI, 2019. (Cited on p. 114.)

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint: 1112.5745, 2011.
(Cited on p. 48.)

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks
with stochastic depth. In European Conference on Computer Vision, ECCV, 2016.
(Cited on pp. 31 and 50.)

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q.
Weinberger. Snapshot ensembles: Train 1, get M for free. In 5th International
Conference on Learning Representations, ICLR, 2017. (Cited on pp. 8, 50, and 95.)

Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, and Max Welling. DIVA: domain
invariant variational autoencoders. In International Conference on Medical Imaging
with Deep Learning, MIDL 2020, 6-8 July 2020, Montréal, QC, Canada, 2020. (Cited
on p. 114.)

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Moham-
mad Emtiyaz Khan. Scalable marginal likelihood estimation for model selection
in deep learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML, 2021a. (Cited on p. 119.)

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of
Bayesian neural nets via local linearization. In The 24th International Conference
on Artificial Intelligence and Statistics, AISTATS, 2021b. (Cited on pp. 57, 58, 59,
and 73.)

Alexander Immer, Tycho F. A. van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and
Mark van der Wilk. Invariance learning in deep neural networks with differentiable
Laplace approximations. In Advances in Neural Information Processing Systems 35,
NeurIPS, 2022. (Cited on pp. 99, 119, 121, and 211.)

Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Rätsch,
and Bernhard Schölkopf. Stochastic marginal likelihood gradients using neural tangent
kernels. In Proceedings of the 39th International Conference on Machine Learning,
ICML, 2023. (Cited on p. 99.)

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 31st International
Conference on Machine Learning, ICML, 2015. (Cited on pp. 12, 159, and 160.)

Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov,
and Andrew Gordon Wilson. Subspace inference for Bayesian deep learning. In
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, UAI, 2019.
(Cited on pp. 12, 13, 33, 34, 54, 56, and 74.)



References 135

Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-
supervised learning with normalizing flows. In Proceedings of the 36th International
Conference on Machine Learning, ICML, 2020. (Cited on p. 21.)

Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dangers of
Bayesian model averaging under covariate shift. Advances in Neural Information
Processing Systems 34, NeurIPS, 2021a. (Cited on p. 13.)

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson.
What are Bayesian neural network posteriors really like? In Proceedings of the 37th
International Conference on Machine Learning, ICML, 2021b. (Cited on pp. 12, 13,
49, and 73.)

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local
experts. Neural Computation, 1991. (Cited on p. 94.)

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial
transformer networks. In Advances in Neural Information Processing Systems 28,
NeurIPS, 2015. (Cited on pp. 113 and 222.)

Metod Jazbec, James Urquhart Allingham, Dan Zhang, and Eric Nalisnick. Towards
anytime classification in early-exit architectures by enforcing conditional monotonicity.
In Advances in Neural Information Processing Systems 36, NeurIPS, 2023. (Cited on
p. 121.)

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural Computation, 1994. (Cited on p. 94.)

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak
Ravanbakhsh. Equivariance with learned canonicalization functions. In Proceedings
of the 39th International Conference on Machine Learning, ICML, 2023. (Cited on
p. 113.)

Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bianconi, Susanne M Melchers,
Lothar R Schad, Timo Gaiser, Alexander Marx, and Frank Gerrit Zöllner. Multi-class
texture analysis in colorectal cancer histology. Scientific reports, 2016. (Cited on
p. 171.)

T. Anderson Keller and Max Welling. Topographic vaes learn equivariant capsules. In
Advances in Neural Information Processing Systems 34, NeurIPS, 2021. (Cited on
p. 114.)

John L. Kelly. A new interpretation of information rate. The Bell System Technical
Journal, 1956. (Cited on p. 2.)

Hamza Keurti, Hsiao-Ru Pan, Michel Besserve, Benjamin F. Grewe, and Bernhard
Schölkopf. Homomorphism autoencoder - learning group structured representations
from observed transitions. In Proceedings of the 39th International Conference on
Machine Learning, ICML, 2023. (Cited on p. 113.)



136 References

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and
Akash Srivastava. Fast and scalable Bayesian deep learning by weight-perturbation
in Adam. In Proceedings of the 34th International Conference on Machine Learning,
ICML, 2018. (Cited on pp. 12, 50, and 56.)

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate inference turns deep networks into Gaussian processes. In Advances in
Neural Information Processing Systems 32, NeurIPS, 2019. (Cited on pp. 58 and 73.)

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong.
Learning probabilistic symmetrization for architecture agnostic equivariance. In Ad-
vances in Neural Information Processing Systems 36, NeurIPS, 2023. (Cited on p. 113.)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR, 2015. (Cited on p. 12.)

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1
convolutions. In Advances in Neural Information Processing Systems 31, NeurIPS,
2018. (Cited on p. 21.)

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In 2nd In-
ternational Conference on Learning Representations, ICLR, 2014. (Cited on pp. 11
and 19.)

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems 28,
NeurIPS, 2015. (Cited on pp. 12, 31, 50, 153, and 160.)

Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference
with inverse autoregressive flows. arXiv preprint: 1606.04934, 2016. (Cited on pp. 21
and 23.)

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 2017. (Cited on p. 63.)

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric
Branchaud-Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline
for deep active learning. Transactions on Machine Learning Research, TMLR, 2023.
(Cited on p. 48.)

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (BiT): General visual representation learning. In
European Conference on Computer Vision, ECCV, 2020. (Cited on p. 82.)

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), 2013. (Cited on p. 171.)



References 137

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a
bit, fixes overconfidence in ReLU networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML, 2020. (Cited on pp. 74 and 166.)

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. (Cited on pp. 82, 161, 167, 171, 172, and 173.)

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems 25, NeurIPS, 2012. (Cited on p. 1.)

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and
active learning. In Advances in Neural Information Processing Systems 8, NeurIPS,
1995. (Cited on pp. 8 and 81.)

Paul H. Kupiec. Techniques for verifying the accuracy of risk measurement models. The
Journal of Derivatives, 1995. (Cited on p. 36.)

Anna Kuzina, Kumar Pratik, Fabio Valerio Massoli, and Arash Behboodi. Equivariant
priors for compressed sensing with unknown orientation. In Proceedings of the 38th
International Conference on Machine Learning, ICML, 2022. (Cited on p. 114.)

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Infor-
mation Processing Systems 30, NeurIPS, 2017. (Cited on pp. 8, 15, 26, 31, 35, 50, 67,
71, 74, 81, 153, and 200.)

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, 2011. (Cited on p. 17.)

Neil D. Lawrence. Variational inference in probabilistic models. PhD thesis, University
of Cambridge, 2001a. (Cited on p. 58.)

Neil D. Lawrence. Node relevance determination. In Proceedings of the 12th Italian
Workshop on Neural Nets, 2001b. (Cited on pp. 14 and 50.)

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Comput., 1989. (Cited on pp. 99, 152, 161, and 167.)

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015. (Cited
on p. 1.)

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In 6th
International Conference on Learning Representations, ICLR, 2018. (Cited on p. 12.)

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for attention-based permutation-invariant neural
networks. In Proceedings of the 35th International Conference on Machine Learning,
ICML, 2019. (Cited on p. 99.)



138 References

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra.
Why M heads are better than one: Training a diverse ensemble of deep networks.
arXiv preprint: 1511.06314, 2015. (Cited on p. 95.)

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant
models with conditional computation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR, 2021. (Cited on pp. 78, 80, and 94.)

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel,
J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV),
2011. (Cited on pp. 26 and 78.)

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. In 6th International Conference on Learning
Representations, ICLR, 2018. (Cited on p. 13.)

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal
of Machine Learning Research, JMLR, 2017. (Cited on p. 153.)

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-
distribution detection. In Advances in Neural Information Processing Systems 33,
NeurIPS, 2020. (Cited on p. 18.)

Xiaolong Liu, Zhidong Deng, and Yuhan Yang. Recent progress in semantic image
segmentation. Artificial Intelligence Review, 2019. (Cited on p. 73.)

Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry P. Vetrov. On
power laws in deep ensembles. In Advances in Neural Information Processing Systems
33, NeurIPS, 2020. (Cited on p. 71.)

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised
learning of disentangled representations. In Proceedings of the 35th International
Conference on Machine Learning, ICML, 2019. (Cited on p. 23.)

Raphael Gontijo Lopes, Yann N. Dauphin, and Ekin Dogus Cubuk. No one representation
to rule them all: Overlapping features of training methods. In 10th International
Conference on Learning Representations, ICLR, 2022. (Cited on p. 94.)

Yuxuan Lou, Fuzhao Xue, Zangwei Zheng, and Yang You. Sparse-MLP: A fully-MLP
architecture with conditional computation. arXiv preprint: 2109.02008, 2021. (Cited
on p. 94.)

Christos Louizos and Max Welling. Structured and efficient variational deep learning
with matrix Gaussian posteriors. In Proceedings of the 32nd International Conference
on Machine Learning, ICML, 2016. (Cited on p. 74.)



References 139

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational
Bayesian neural networks. In Proceedings of the 33rd International Conference on
Machine Learning, ICML, 2017. (Cited on p. 21.)

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard S. Zemel. The vari-
ational fair autoencoder. In 4th International Conference on Learning Representations,
ICLR, 2016. (Cited on p. 114.)

Chao Ma, Yingzhen Li, and José Miguel Hernández-Lobato. Variational implicit processes.
In Proceedings of the 35th International Conference on Machine Learning, ICML, 2019.
(Cited on pp. 13 and 50.)

David J. C. MacKay. A practical Bayesian framework for backpropagation networks.
Neural Computation, 1992. (Cited on pp. 10, 50, 57, 73, 74, and 95.)

David J. C. MacKay. Bayesian nonlinear modeling for the prediction competition.
ASHRAE transactions, 1994. (Cited on pp. 14 and 50.)

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms, chapter
28. Model Comparison and Occam’s Razor, pages 341–356. Cambridge University
Press, 2003. (Cited on p. 2.)

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. In Advances in
Neural Information Processing Systems 32, NeurIPS, 2019. (Cited on pp. 8, 50, 63, 67,
and 74.)

Wesley J. Maddox, Gregory W. Benton, and Andrew Gordon Wilson. Rethinking
parameter counting in deep models: Effective dimensionality revisited. arXiv preprint
2003.02139, 2020. (Cited on pp. 56 and 66.)

Kaitlin Maile, Dennis George Wilson, and Patrick Forré. Equivariance-aware architec-
tural optimization of neural networks. In 11th International Conference on Learning
Representations, ICLR, 2023. (Cited on p. 104.)

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie Duan, Shaokai Ye, Yuan He,
and Hui Xue. Towards robust vision transformer. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2022. (Cited on p. 94.)

James Martens. Second-order Optimization for Neural Networks. PhD thesis, University
of Toronto, 2016. (Cited on p. 58.)

James Martens. New insights and perspectives on the natural gradient method. Journal
of Machine Learning Research, JMLR, 2020. (Cited on p. 58.)

James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In Proceedings of the 39th International Conference on Machine
Learning, ICML, 2015. (Cited on pp. 10 and 120.)

James Martens and Ilya Sutskever. Learning recurrent neural networks with Hessian-free
optimization. In Proceedings of the 27th International Conference on Machine Learning,
ICML, 2011. (Cited on p. 58.)



140 References

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disen-
tanglement testing sprites dataset, 2017. (Cited on pp. 108 and 218.)

Ning Miao, Tom Rainforth, Emile Mathieu, Yann Dubois, Yee Whye Teh, Adam Fos-
ter, and Hyunjik Kim. Learning instance-specific augmentations by capturing local
invariances. In Proceedings of the 39th International Conference on Machine Learning,
ICML, 2023. (Cited on pp. 99, 113, and 121.)

Xu Miao and Rajesh P. N. Rao. Learning the lie groups of visual invariance. Neural
Computation, 19(10):2665–2693, 2007. (Cited on p. 113.)

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil
Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural
networks. In Advances in Neural Information Processing Systems 34, NeurIPS, 2021.
(Cited on pp. 92 and 94.)

Thomas P Minka. Bayesian model averaging is not model combination. Available
electronically at http://www. stat. cmu. edu/minka/papers/bma. html, 2000. (Cited on
p. 50.)

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, and Moham-
mad Emtiyaz Khan. SLANG: fast structured covariance approximations for Bayesian
deep learning with natural gradient. In Advances in Neural Information Processing
Systems 31, NeurIPS, 2018. (Cited on p. 73.)

Bruno Kacper Mlodozeniec, Matthias Reisser, and Christos Louizos. Hyperparameter
optimization through neural network partitioning. In 11th International Conference
on Learning Representations, ICLR, 2023. (Cited on p. 99.)

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Mudumba, and Siamak
Ravanbakhsh. Equivariant adaptation of large pretrained models. In Advances in
Neural Information Processing Systems 36, NeurIPS, 2023. (Cited on p. 113.)

Chelsea Murray, James U Allingham, Javier Antorán, and José Miguel Hernández-Lobato.
Addressing bias in active learning with depth uncertainty networks... or not. In I (Still)
Can’t Believe It’s Not Better! Workshop at NeurIPS 2021, 2021a. (Cited on p. 121.)

Chelsea Murray, James Urquhart Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Depth uncertainty networks for active learning. NeurIPS Workshop on
Bayesian Deep Learning, 2021b. (Cited on pp. 3, 25, and 121.)

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, André Susano Pinto, Daniel Keysers,
and Neil Houlsby. Deep ensembles for low-data transfer learning. arXiv preprint:
2010.06866, 2020. (Cited on pp. 90 and 201.)

Eric T. Nalisnick and Padhraic Smyth. Learning approximately objective priors. In
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence,
UAI 2017, Sydney, Australia, August 11-15, 2017, 2017. (Cited on p. 114.)

Eric T. Nalisnick and Padhraic Smyth. Learning priors for invariance. In The 21st
International Conference on Artificial Intelligence and Statistics, AISTATS, 2018.
(Cited on pp. 13, 61, and 99.)



References 141

Eric T. Nalisnick, José Miguel Hernández-Lobato, and Padhraic Smyth. Dropout as a
structured shrinkage prior. In Proceedings of the 35th International Conference on
Machine Learning, ICML, 2019a. (Cited on pp. 14 and 50.)

Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and Balaji Lak-
shminarayanan. Do deep generative models know what they don’t know? In 7th
International Conference on Learning Representations, ICLR, 2019b. (Cited on p. 72.)

Eric T. Nalisnick, Jonathan Gordon, and José Miguel Hernández-Lobato. Predictive
complexity priors. In The 24th International Conference on Artificial Intelligence and
Statistics, AISTATS, 2021. (Cited on pp. 13 and 61.)

Giung Nam, Jongmin Yoon, Yoonho Lee, and Juho Lee. Diversity matters when learning
from ensembles. In Advances in Neural Information Processing Systems 34, NeurIPS,
2021. (Cited on p. 95.)

Radford M. Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1995. (Cited on pp. 11, 12, 49, and 73.)

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov chain
Monte Carlo, 2011. (Cited on p. 11.)

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In Advances in
Neural Information Processing Systems 24, NeurIPS, 2011. (Cited on pp. 161, 167,
and 173.)

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2015. (Cited on pp. 26 and 54.)

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, 2008. (Cited on p. 173.)

Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin
Tran. Measuring calibration in deep learning. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, CVPR Workshops, 2019. (Cited on p. 17.)

Sebastian W. Ober and Carl Edward Rasmussen. Benchmarking the neural linear model
for regression. In 1st Symposium on Advances in Approximate Bayesian Inference,
AABI, 2019. (Cited on p. 74.)

OpenAI. GPT-4 technical report. arXiv preprint: 2303.08774, 2023. (Cited on p. 1.)

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of artificial intelligence research, 1999. (Cited on pp. 8 and 81.)

Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa
Eschenhagen, Richard E. Turner, and Rio Yokota. Practical deep learning with Bayesian
principles. In Advances in Neural Information Processing Systems 32, NeurIPS, 2019.
(Cited on pp. 12, 50, 54, 56, 63, 67, 74, and 166.)



142 References

Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers
of dropout. In NeurIPS workshop on Bayesian deep learning, 2016. (Cited on p. 12.)

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped DQN. In Advances in Neural Information Processing Systems
29, NeurIPS, 2016. (Cited on p. 2.)

Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D. Sculley,
Joshua V. Dillon, Jie Ren, Zachary Nado, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift. In Advances
in Neural Information Processing Systems 32, NeurIPS, 2019. (Cited on pp. 17, 31,
40, 41, 54, 63, 67, 69, 74, 79, 158, and 200.)

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow
for density estimation. In Advances in Neural Information Processing Systems 30,
NeurIPS, 2017. (Cited on p. 21.)

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
Journal of Machine Learning Research, JMLR, 2021. (Cited on p. 21.)

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and
dogs. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2012.
(Cited on pp. 171 and 173.)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, NeurIPS, 2019. (Cited on p. 152.)

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural
network training. arXiv preprint: 2104.10350, 2021. (Cited on pp. 78 and 120.)

Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In The 36th
AAAI Conference on Artificial Intelligence, AAAI, 2022. (Cited on p. 94.)

Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely.
Expressive priors in Bayesian neural networks: Kernel combinations and periodic
functions. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence,
UAI, 2019. (Cited on pp. 13 and 61.)

Robert Pinsler, Jonathan Gordon, Eric T. Nalisnick, and José Miguel Hernández-Lobato.
Bayesian batch active learning as sparse subset approximation. In Advances in Neural
Information Processing Systems 32, NeurIPS, 2019. (Cited on p. 74.)

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico Tombari.
Sampling-free epistemic uncertainty estimation using approximated variance propaga-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
ICCV, 2019. (Cited on p. 50.)



References 143

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural language
supervision. In Proceedings of the 37th International Conference on Machine Learning,
ICML, 2021. (Cited on p. 82.)

Alexandre Ramé, Rémy Sun, and Matthieu Cord. Mixmo: Mixing multiple inputs for
multiple outputs via deep subnetworks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, ICCV, 2021. (Cited on p. 95.)

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. arXiv preprint: 2204.06125,
2022. (Cited on pp. 1 and 19.)

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational inference. In
The 7th International Conference on Artificial Intelligence and Statistics, AISTATS,
2014. (Cited on p. 10.)

Rajesh P. N. Rao and Daniel L. Ruderman. Learning lie groups for invariant visual
perception. In Michael J. Kearns, Sara A. Solla, and David A. Cohn, editors, Advances
in Neural Information Processing Systems 11, NeurIPS, 1998. (Cited on p. 113.)

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In Proceedings of the 35th International Conference
on Machine Learning, ICML, 2019. (Cited on p. 172.)

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In Proceedings of the 31st International Conference on Machine Learning, ICML,
2015. (Cited on p. 21.)

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In Proceedings of the 30th
International Conference on Machine Learning, ICML, 2014. (Cited on p. 19.)

Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with
deep density models. arXiv preprint: 1302.5125, 2013. (Cited on p. 19.)

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian bandits showdown:
An empirical comparison of Bayesian deep networks for thompson sampling. In 6th
International Conference on Learning Representations, ICLR, 2018. (Cited on p. 74.)

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton,
André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse
mixture of experts. In Advances in Neural Information Processing Systems 34, NeurIPS,
2021. (Cited on pp. 78, 79, 80, 81, 82, 83, 84, 88, 90, 94, 169, 170, 171, 174, 175, 176,
181, 182, 190, and 200.)

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation
for neural networks. In 6th International Conference on Learning Representations,
ICLR, 2018. (Cited on pp. 10, 50, 59, 74, 95, 120, and 166.)



144 References

David W. Romero and Suhas Lohit. Learning partial equivariances from data. In
Advances in Neural Information Processing Systems 35, NeurIPS, 2022. (Cited on
p. 99.)

Cédric Rommel, Thomas Moreau, and Alexandre Gramfort. Deep invariant networks
with differentiable augmentation layers. In Advances in Neural Information Processing
Systems 35, NeurIPS, 2022. (Cited on p. 99.)

Simone Rossi, Sébastien Marmin, and Maurizio Filippone. Walsh-hadamard variational
inference for Bayesian deep learning. In Advances in Neural Information Processing
Systems 33, NeurIPS, 2020. (Cited on p. 74.)

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 2015. (Cited on pp. 1 and 43.)

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton,
Seyed Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan,
Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic
text-to-image diffusion models with deep language understanding. In Advances in
Neural Information Processing Systems 35, NeurIPS, 2022. (Cited on pp. 1 and 19.)

Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In The 12th
International Conference on Artificial Intelligence and Statistics, AISTATS, 2009.
(Cited on p. 17.)

Pola Schwöbel, Martin Jørgensen, Sebastian W. Ober, and Mark van der Wilk. Last
layer marginal likelihood for invariance learning. In The 25th International Conference
on Artificial Intelligence and Statistics, AISTATS, 2022. (Cited on p. 99.)

Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,
Tim Green, Chongli Qin, Augustin Zídek, Alexander W. R. Nelson, Alex Bridgland,
Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli,
David T. Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Improved
protein structure prediction using potentials from deep learning. Nature, 2020. (Cited
on p. 1.)

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009. (Cited on pp. 2 and 48.)

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. In 5th International Conference on Learning Representations,
ICLR, 2017. (Cited on pp. 3, 78, 80, 81, 94, and 175.)

Zhixin Shu, Mihir Sahasrabudhe, Riza Alp Güler, Dimitris Samaras, Nikos Paragios, and
Iasonas Kokkinos. Deforming autoencoders: Unsupervised disentangling of shape and
appearance. In European Conference on Computer Vision, ECCV, 2018. (Cited on
p. 114.)



References 145

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 2016. (Cited on p. 1.)

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR,
2015. (Cited on p. 152.)

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.
(Cited on p. 17.)

Edward Lloyd Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems 18, NeurIPS, 2005.
(Cited on p. 12.)

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems
25, NeurIPS, 2012. (Cited on p. 153.)

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable Bayesian
optimization using deep neural networks. In Proceedings of the 31st International
Conference on Machine Learning, ICML, 2015. (Cited on pp. 56, 64, and 74.)

Masoumeh Soflaei, Hongyu Guo, Ali Al-Bashabsheh, Yongyi Mao, and Richong Zhang.
Aggregated learning: A vector-quantization approach to learning neural network
classifiers. In The 34th AAAI Conference on Artificial Intelligence, AAAI, 2020. (Cited
on p. 89.)

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the
31st International Conference on Machine Learning, ICML, 2015. (Cited on p. 18.)

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. In 9th International Conference on Learning Representations, ICLR, 2021.
(Cited on p. 18.)

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, JMLR, 2014. (Cited on pp. 12 and 200.)

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your ViT? data, augmentation, and regularization in
vision transformers. Transactions on Machine Learning Research, TMLR, 2022. (Cited
on p. 200.)



146 References

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considera-
tions for deep learning in NLP. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL, 2019. (Cited on p. 78.)

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unrea-
sonable effectiveness of data in deep learning era. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, ICCV, 2017. (Cited on pp. 82 and 169.)

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger B. Grosse. Functional variational
Bayesian neural networks. In 7th International Conference on Learning Representations,
ICLR, 2019. (Cited on pp. 13, 50, and 61.)

Jakub Swiatkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper
Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin.
The k-tied normal distribution: A compact parameterization of Gaussian mean field
posteriors in Bayesian neural networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML, 2020. (Cited on p. 74.)

Tesla. Autopilot | Tesla. https://www.tesla.com/autopilot, 2024. Accessed: 2024-
02-05. (Cited on p. 2.)

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for
batch normalized deep networks. In Proceedings of the 34th International Conference
on Machine Learning, ICML, 2018. (Cited on pp. 12 and 50.)

Michalis K. Titsias. Variational learning of inducing variables in sparse gaussian processes.
In The 12th International Conference on Artificial Intelligence and Statistics, AISTATS,
2009. (Cited on p. 12.)

Linh Tran, Bastiaan S. Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V. Dillon,
Jasper Snoek, Stephan Mandt, Tim Salimans, Sebastian Nowozin, and Rodolphe
Jenatton. Hydra: Preserving ensemble diversity for model distillation. arXiv preprint:
2001.04694, 2020. (Cited on p. 95.)

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: the real-valued neural
autoregressive density-estimator. In Advances in Neural Information Processing Systems
26, NeurIPS, 2013. (Cited on p. 17.)

Sharvaree Vadgama, Jakub Mikolaj Tomczak, and Erik J Bekkers. Kendall shape-VAE:
Learning shapes in a generative framework. In NeurIPS 2022 Workshop on Symmetry
and Geometry in Neural Representations, 2022. (Cited on p. 114.)

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In
Advances in Neural Information Processing Systems 33, NeurIPS, 2020. (Cited on
p. 23.)

Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling.
Sylvester normalizing flows for variational inference. In Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey,
California, USA, August 6-10, 2018, 2018. (Cited on p. 21.)

https://www.tesla.com/autopilot


References 147

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. WaveNet:
A generative model for raw audio. In The 9th ISCA Speech Synthesis Workshop,
Sunnyvale, CA, USA, 13-15 September 2016, 2016a. (Cited on p. 17.)

Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol
Vinyals, and Alex Graves. Conditional image generation with pixelcnn decoders. In
Advances in Neural Information Processing Systems 29, NeurIPS, 2016b. (Cited on
p. 17.)

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In Proceedings of the 32nd International Conference on Machine Learning,
ICML, 2016c. (Cited on p. 17.)

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg,
Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal
Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov, and
Demis Hassabis. Parallel WaveNet: Fast high-fidelity speech synthesis. In International
Conference on Machine Learning, 2018. (Cited on p. 21.)

Tycho F. A. van der Ouderaa and Mark van der Wilk. Learning invariant weights in
neural networks. In Proceedings of the 38th Conference on Uncertainty in Artificial
Intelligence, UAI, 2022. (Cited on pp. 99, 102, 106, and 211.)

Mark van der Wilk, Matthias Bauer, S. T. John, and James Hensman. Learning
invariances using the marginal likelihood. In Advances in Neural Information Processing
Systems 31, NeurIPS, 2018. (Cited on pp. 99 and 106.)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems 30, NeurIPS, 2017. (Cited on pp. 3 and 80.)

Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling.
Rotation equivariant cnns for digital pathology. arXiv preprint: 1806.03962, 2018.
(Cited on pp. 108 and 224.)

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent
Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James
Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman
Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 2019. (Cited on p. 1.)

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
The Caltech-UCSD birds-200-2011 dataset. Technical report, California Institute of
Technology, 2011. (Cited on p. 171.)



148 References

Mike Walmsley, Chris Lintott, Tobias Géron, Sandor Kruk, Coleman Krawczyk, Kyle W.
Willett, Steven Bamford, Lee S. Kelvin, Lucy Fortson, Yarin Gal, William Keel,
Karen L. Masters, Vihang Mehta, Brooke D. Simmons, Rebecca Smethurst, Lewis
Smith, Elisabeth M. Baeten, and Christine Macmillan. Galaxy Zoo DECaLS: Detailed
visual morphology measurements from volunteers and deep learning for 314 000 galaxies.
arXiv preprint: 2102.08414, 2022. (Cited on p. 108.)

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before
training by preserving gradient flow. In 8th International Conference on Learning
Representations, ICLR, 2020. (Cited on p. 74.)

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle opti-
mization for Bayesian neural networks. In 7th International Conference on Learning
Representations, ICLR, 2019. (Cited on p. 50.)

Max Welling. Do we still need models or just more data and compute? University of
Amsterdam, April, 2019. (Cited on p. 19.)

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 27th International Conference on Machine Learning,
ICML, 2011. (Cited on p. 11.)

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: an alternative approach to
efficient ensemble and lifelong learning. In 8th International Conference on Learning
Representations, ICLR, 2020. (Cited on pp. 8, 13, 81, 82, 85, 89, 95, 174, 175, 179,
180, and 182.)

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin.
How good is the Bayes posterior in deep neural networks really? In Proceedings of the
36th International Conference on Machine Learning, ICML, 2020a. (Cited on pp. 13
and 50.)

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter
ensembles for robustness and uncertainty quantification. In Advances in Neural
Information Processing Systems 33, NeurIPS, 2020b. (Cited on pp. 94, 95, and 175.)

Andrew Gordon Wilson. The case for Bayesian deep learning. arXiv preprint 2001.10995,
2020. (Cited on pp. 13, 50, and 77.)

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. In Advances in Neural Information Processing Systems
33, NeurIPS, 2020. (Cited on pp. 13, 74, and 77.)

Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, and Djork-Arné Clevert. Unsu-
pervised learning of group invariant and equivariant representations. In Advances in
Neural Information Processing Systems 35, NeurIPS, 2022. (Cited on p. 113.)

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,



References 149

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint: 1609.08144,
2016. (Cited on p. 1.)

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint: 1708.07747, 2017. (Cited
on pp. 161 and 167.)

Jingjing Xie, Bing Xu, and Chuang Zhang. Horizontal and vertical ensemble with deep
representation for classification. arXiv preprint: 1306.2759, 2013. (Cited on p. 95.)

Jin Xu, Hyunjik Kim, Thomas Rainforth, and Yee Whye Teh. Group equivariant
subsampling. In Advances in Neural Information Processing Systems 34, NeurIPS,
2021. (Cited on p. 114.)

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, and Yang You. Go wider
instead of deeper. In The 36th AAAI Conference on Artificial Intelligence, AAAI,
2022. (Cited on p. 94.)

An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie
Zhang, Jiamang Wang, Yong Li, et al. Exploring sparse expert models and beyond.
arXiv preprint: 2105.15082, 2021. (Cited on pp. 85, 87, and 94.)

Jianke Yang, Robin Walters, Nima Dehmamy, and Rose Yu. Generative adversarial
symmetry discovery. In Proceedings of the 39th International Conference on Machine
Learning, ICML, 2023. (Cited on pp. 113, 223, and 224.)

Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use
classification. In Proceedings of the 18th SIGSPATIAL international conference on
advances in geographic information systems, 2010. (Cited on p. 172.)

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of
experts. IEEE transactions on neural networks and learning systems, 2012. (Cited on
p. 94.)

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22,
2016, 2016. (Cited on pp. 157 and 165.)

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, ECCV, 2014. (Cited on p. 28.)

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision
transformers. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2022. (Cited on p. 183.)

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In 6th International Conference on Learning
Representations, ICLR, 2018. (Cited on p. 200.)



150 References

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.
Cyclical stochastic gradient MCMC for Bayesian deep learning. In 7th International
Conference on Learning Representations, ICLR, 2019. (Cited on p. 95.)

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places:
A 10 million image database for scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017. (Cited on p. 173.)



Appendix A

DUN Details

A.1 Shape and Size Adaptation

When applying Depth Uncertainty Networks (DUNs) to modern CNN architectures,
such as ResNets, there is an additional complication. The output block of a DUN
expects a certain number of channels in its input. However, the intermediate blocks have
inconsistent numbers of channels in their outputs. To overcome this issue, we introduce
adaptation layers which up-scale the number of channels of intermediate layers so that
they match the number expected by the output block. This is shown in Figure A.1.

f0

f1

f2

f3

f4

fD

x u0

u1

u2

u2

uK

l0 l1 lK−1 lK

fD+1 ŷi

Figure A.1: For network architectures in which the input and output number of channels or
dimensions is not constant, we add adaptation layers to the computational model shown in
Figure 3.2. The nth adaption layer un takes a number of channels/dimensions ln−1 and outputs
ln channels/dimensions. Later adaptation layers are reused multiple times, reducing the number
of parameters required. Note that block sizes are unrelated to their number of parameters.



152 DUN Details

Note, however, that this channel mismatch issue is a specific instance of a more
general problem of shape and size mismatch between layers in a DUN. Consider the
following cases where constructing a DUN is non-trivial:

• A NN consisting of series of dense layers of different dimensions. E.g., an auto-
encoder or U-Net.

• A NN consisting of a mix of convolutional and dense layers. E.g., VGG (Simonyan
and Zisserman, 2015) or LeNet (LeCun et al., 1989).

In the first case, we will have dimensionality mismatches between the different dense
layers. In the second case, we will have shape mismatches between the 3D convolutional
layers and the 1D dense layers, in addition to the potential size mismatches between
layers if the same type.

Fortunately, adaptation layers can be used to solve any shape and size mismatches. Size
mismatches can be naively solved by either padding or dropping tensors as appropriate.
Another solution is to use (parameter) cheap 1×1 convolution layers and low-rank1 dense
layers in the case of mismatches between the number of channels and the number of
dimensions, respectively. Shape mismatches can easily be solved by using standard
reshape and/or flatten layers found in most deep learning frameworks.

A.2 Experimental Setup

We implement all of our experiments in PyTorch (Paszke et al., 2019). Gaussian processes
for toy data experiments are implemented with GPyTorch (Gardner et al., 2018).

A.2.1 Toy Dataset Experiments

Unless specified otherwise, all NNs used for toy regression experiments in Section 3.3.2
consist of fully connected models with ReLU activations and residual connections. Their
hidden layer width is 100. Batch normalisation is applied after every layer for Stochastic
Gradient Descent (SGD) and DUNs. Network depths are defined on a per-experiment
basis. DUNs employ linear input and output blocks, meaning that a depth of d=0

corresponds to a linear model. We refer to depth as the number of hidden layers of a NN.
Ensemble elements, DUNs and dropout models employ a weight decay value of 10−4.

Ensembles are composed of 20 identical networks, trained from different initialisations.
1A low rank dense layer with input of size n1 and output of size n2 can be constructed by composing

two standard dense layers of size n1×n3 and n3×n2 where n3 << n1, n2.



A.2 Experimental Setup 153

Initialisation parameters are sampled from the He initialisation (He et al., 2015). Dropout
probabilities are fixed to 0.1. Mean-Field Variational Inference (MFVI) networks use a
N (0, I) prior. Gradients of the likelihood term in the Evidence Lower BOund (ELBO)
are estimated with the local reparameterisation trick (Kingma et al., 2015) using 5 Monte
Carlo (MC) samples. DUNs employ uniform priors, assigning the same mass to each
depth.

Networks are optimised using 6000 steps of full-batch gradient descent with a mo-
mentum value of 0.9 and learning rate of 10−3. Exceptions to this are: Dropout being
trained for 10000 epochs, as we found 6000 to not be enough to achieve convergence, and
MFVI using a learning rate of 10−2. For MFVI and DUNs, we scale the ELBO by one
over the number of data points N . This makes the scale of the objective insensitive to
dataset size.

The parameters of the predictive distributions are computed as described in Sec-
tion 2.1.3. For 1D datasets, we draw 104 MC samples with MFVI and dropout. Plot
error bars correspond to the standard deviations of each approach’s mean predictions.
Thus, they convey model uncertainty.

Gaussian processes use a Gaussian likelihood function and radial basis function kernel.
A gamma prior with parameters α = 1, β = 20 is placed on the length-scale parameter.
This avoids local optima of the log-likelihood function where fast-varying patterns in the
data are treated like noise. Noise variance and kernel parameters are learnt by optimising
the Marginal Log Likelihood (MLL) with 100 steps of Adam. Step size is set to 0.1.

We employ 7 different toy datasets. These allow us to test methods’ capacity to
express uncertainty in-between clusters of data and outside the convex hull of the data.
They also allow us to evaluate methods’ capacity to fit different, quickly varying functions.
All of them can be loaded using our provided code.

A.2.2 Regression Experiments

Hyperparameter Optimisation and Training

To obtain our results on tabular regression tasks, given in Section 3.3.3, we follow
Hernández-Lobato and Adams (2015) and follow-up work Gal and Ghahramani (2016);
Lakshminarayanan et al. (2017) in performing Hyperparameter Optimisation (HPO)
to determine the best configurations for each method. However, rather than using
Bayesian Optimisation (BO) (Snoek et al., 2012) we use Bayesian Optimisation and
Hyperband (BOHB) (Falkner et al., 2018). This method, as the name suggests, combines
BO with Hyperband, a bandit-based HPO method (Li et al., 2017). BOHB has the



154 DUN Details

strengths of both BO (strong final performance) and Hyperband (scalability, flexibility,
and robustness).

In particular, we use the HpBandSter implementation of BOHB: https://github.
com/automl/HpBandSter. We run BOHB for each dataset and split for 20 iterations
using the same settings, shown in Table A.1. min_budget and max_budget are defined
on a per-dataset basis, as shown in Table A.2. We find these values to be sufficiently
large to ensure all methods’ convergence.

Table A.1: BOHB settings.

Setting Value

eta 3
min_points_in_model None
top_n_percent 14
num_samples 64
random_fraction 1/3
bandwidth_factor 3
min_bandwidth 1e-3

For each test-train split of each dataset, we split the original training set into a new
training set and a validation set. The validation sets are taken to be the last N elements
of the original training set, where N is calculated from the validation proportions listed
in Table A.2. The training and validation sets are normalised by subtracting the mean
and dividing by the variance of the new training set. BOHB performs minimisation on
the validation Negative Log Likelihood (NLL). During optimisation, we perform early
stopping with patience values shown in Table A.2.

As shown in Table A.3, each method has a different set of hyperparameters to optimise.
The BOHB configuration for each hyperparameter is shown in Table A.4. It is worth
noting that maximum network depth is a hyperparameter which we optimise with BOHB.
DUNs benefit from being deeper as it allows them to perform Bayesian Model Averaging
(BMA) over a larger set of functions. We prevent this from disadvantaging competing
methods by choosing the depth at which each one performs best.

All methods are applied to fully-connected networks with a hidden layer width of
100. We employ residual connections, allowing all approaches to better take advantage
of depth. All methods are trained using SGD with momentum and a batch size of 128.
No learning rate scheduling is performed. We use batch-normalisation for DUNs and
vanilla networks (labelled SGD in experiments). All DUNs are trained using Variational
Inference (VI) (3.7). The likelihood term in the MFVI ELBO is estimated with 3 MC

https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter


A.2 Experimental Setup 155

Table A.2: Per-dataset HPO configurations.

Dataset Min Budget Max Budget Early Stop Patience Val Prop

Boston 200 2000 200 0.15
Concrete 200 2000 200 0.15
Energy 200 2000 200 0.15
Kin8nm 50 500 50 0.15
Naval 50 500 50 0.15
Power 50 500 50 0.15
Protein 50 500 50 0.15
Wine 100 1000 100 0.15
Yacht 200 2000 200 0.15
Boston Gap 200 2000 200 0.15
Concrete Gap 200 2000 200 0.15
Energy Gap 200 2000 200 0.15
Kin8nm Gap 50 500 50 0.15
Naval Gap 50 500 50 0.15
Power Gap 50 500 50 0.15
Protein Gap 50 500 50 0.15
Wine Gap 100 1000 100 0.15
Yacht Gap 200 2000 200 0.15
Flights 2 25 5 0.05



156 DUN Details

samples per input. For MFVI and Dropout, 10 MC samples are used to estimate the test
log-likelihood. Ensembles use 5 elements for prediction. Ensemble elements differ from
each other in their initialisation, which is sampled from the He initialisation distribution
(He et al., 2015). We do not use adversarial training as, in line with Ashukha et al.
(2020), we do not find it to improve results.

Table A.3: Hyperparameters optimised for each method.

Hyperparameter DUN SGD MFVI MC Dropout

Learning Rate ✓ ✓ ✓ ✓
SGD Momentum ✓ ✓ ✓ ✓
Num. Layers ✓ ✓ ✓ ✓
Weight Decay ✓ ✓ ✓
Prior Std. Dev. ✓
Drop Prob. ✓

Table A.4: BOHB hyperparameter optimisation configurations. All hyperparameters were
sampled from uniform distributions.

Hyperparameter Lower Upper Default Log Data Type

Learning Rate 1× 10−4 1 0.01 True float
SGD Momentum 0 0.99 0.5 False float
Num. Layers 1 40 5 False int
Weight Decay 1× 10−6 0.1 5× 10−4 True float
Prior Std. Dev. 0.01 10 1 True float
Drop Prob. 5× 10−3 0.5 0.2 True float

Evaluation

The best configuration found for each dataset, method and split is used to re-train a
model on the entire original training set. For the flights dataset, which does not come
with multiple splits, we repeat this five times. We report mean and standard deviation
values across all five. Final run training and test sets are normalised using the mean
and variance of the original training set. Note, however, that the results presented in
Section 3.3.3 are unnormalised. The number of epochs used for final training runs is the
number of epochs at which the optimal configuration was found with HPO.

Timing experiments for regression models are performed on a 40-core Intel Xeon
CPU E5-2650 v3 2.30GHz. We report computation time for a single batch of size 512,



A.2 Experimental Setup 157

which we evaluate across 5 runs. Ensembles, Dropout and MFVI require multiple forward
passes per batch. We report the time taken for all passes to be made. For Ensembles, we
also include network loading time.

A.2.3 Image Experiments

Training

The results shown in Section 3.3.4 are obtained by training ResNet-50 models using SGD
with momentum. The initial learning rate, momentum, and weight decay are 0.1, 0.9,
and 1× 10−4, respectively. We train on 2 Nvidia P100 GPUs with a batch size of 256
for all experiments. Each dataset is trained for a different number of epochs, shown
in Table A.5. We decay the learning rate by a factor of 10 at scheduled epochs, also
shown in Table A.5. Otherwise, all methods and datasets share hyperparameters. These
hyperparameter settings are the defaults provided by PyTorch for training on ImageNet.
We found them to perform well across the board. We report results obtained at the final
training epoch. We do not use a separate validation set to determine the best epoch, as
we found ResNet-50 not to overfit with the chosen schedules.

Table A.5: Per-dataset training configuration for image experiments.

Dataset Num. Epochs LR Schedule

MNIST 90 40, 70
Fashion 90 40, 70
SVHN 90 50, 70
CIFAR10 300 150, 225
CIFAR100 300 150, 225
ImageNet 90 30, 60

For dropout experiments, we add dropout to the standard ResNet-50 model (He
et al., 2016a) in between the 2nd and 3rd convolutions in the bottleneck blocks. This
approach follows Zagoruyko and Komodakis (2016) and Ashukha et al. (2020), who add
dropout in between the two convolutions of a WideResNet-50’s basic block. Following
their approach, we try a dropout probability of 0.3. However, we find that this value
is too large and causes underfitting. A dropout probability of 0.1 provides stronger
results. We use 10 MC samples for predictions. Ensembles use 5 elements for prediction.
Ensemble elements differ from each other in their initialisation, which is sampled from
the He initialisation distribution (He et al., 2015). We do not use adversarial training as,
in line with Ashukha et al. (2020), we do not find it to improve results.



158 DUN Details

We modify the standard ResNet-50 architecture such that the first 7×7 convolution
is replaced with a 3×3 convolution. Additionally, we remove the first max-pooling layer.
Following Goyal et al. (2017), we zero-initialise the last batch normalisation layer in
residual blocks so that they act as identity functions at the start of training. Because the
output block of a ResNet expects to receive activations with a fixed number of channels,
we add up-scaling layers. We implement these using 1×1 convolutions. Figure A.1 shows
this modified computational model.

For the MNIST and Fashion-MNIST datasets, we train DUNs with a fixed approximate
posterior qα(d) = pβ(d) for the first 3 epochs. These are the simplest image datasets we
work with and can be readily solved with shallower models than ResNet-50. By fixing
qα(d) for the first epochs, we ensure all layers receive strong gradients and become useful
for making predictions.

Evaluation

All methods are trained 5 times on each dataset, allowing for error bars in experiments.
We report mean values and standard deviations.

To evaluate the methods’ resilience to out-of-distribution data, we follow Ovadia et al.
(2019). We train each method on MNIST and evaluate its predictive distributions on
increasingly rotated digits. We also train models on CIFAR10 and evaluate them on
data submitted to 16 different corruptions (Hendrycks and Dietterich, 2019) with 5 levels
of severity each. Per severity, results are provided.

We simulate a realistic Out-of-distribution (OOD) rejection scenario (Filos et al.,
2019) by jointly evaluating our models on an in-distribution and an OOD test set. We
allow our methods to reject increasing proportions of the data based on predictive entropy
before classifying the rest. All predictions on OOD samples are treated as incorrect.
We also perform OOD detection experiments, where we evaluate methods’ capacity to
distinguish in-distribution and OOD points using predictive entropy.

For all datasets, we compute run times per batch of size of 256 samples on two P100
GPUs. Results are obtained as averages of 5 independent runs. Ensembles and Dropout
require multiple forward passes per batch. We report the time taken for all passes to be
made. For Ensembles, we also include network loading time. This is because, in most
cases, keeping 5 ResNet-50’s in memory is unrealistic.



A.2 Experimental Setup 159

A.2.4 NAS Experiments

For experiments on the spirals dataset, our input f0 and output fD+1 blocks consist
of linear layers. These map from input space to the selected width w and from w to
the output size, respectively. Thus, selecting d = 0 ⇒ bi=0∀i ∈ [1, D] results in a
linear model. The functions applied in residual blocks, fi(·)∀i ∈ [1, D], consist of a fully
connected layer followed by a ReLU activation function and Batch Normalization (Ioffe
and Szegedy, 2015).

Our architecture for the image experiments uses a 5×5 convolutional layer together
with a 2×2 average pooling layer as an input block f0. No additional down-sampling
layers are used. The output block, fD+1, is composed of a global average pooling layer
followed by a fully connected residual block, as described in the previous paragraph, and
a linear layer. The function applied in the residual blocks, fi(·)∀i ∈ [1, D], matches the
preactivation bottleneck residual function described by He et al. (2016b) and uses 3×3
convolutions. The outer number of channels is set to 64, and the bottleneck number is
32.

A.2.5 Active Learning Experiments

We implement batch-based active learning, with batches of 20 (for most UCI datasets)
data points acquired in each query, depending on the size of the dataset. An initial
training set representing a small proportion of the full data is selected uniformly at
random in the first query. For all regression datasets, 80% of the data are used for training,
10% for validation and 10% for testing. The standard train-test split is used for MNIST.
Details about dataset sizes, input dimensionality, and active learning specifications for
each dataset are provided in Table A.6.

Table A.6: Summary of datasets and active learning specifications. 80% of the data is used
for training, 10% for validation and 10% for testing.

Name Size Input Dim. Init. train size No. queries Query size

Concrete Strength 1,030 8 50 30 20
Energy Efficiency 768 8 50 30 20
Kin8nm 8,192 8 50 30 20
Naval Propulsion 11,934 16 50 30 20
Power Plant 9,568 4 50 30 20
Protein Structure 45,730 9 50 30 20
Wine Quality Red 1,599 11 50 30 20
Yacht Hydrodynamics 308 6 20 20 10



160 DUN Details

For the regression problems, we implement a fully-connected network with residual
connections, with 100 hidden nodes per layer. The networks contain 10 hidden layers
for DUNs, or three hidden layers for Monte Carlo Dropout (MCDO) and MFVI. Other
depths were tested for the baseline methods, with similar results to the chosen depth of
three layers. We use ReLU activations, and for DUNs batch normalisation is applied after
every layer (Ioffe and Szegedy, 2015). Optimisation is performed over 1, 000 iterations
with full-batch gradient descent, with momentum of 0.9 and a learning rate of 10−4. A
weight decay value of 10−5 is also used. We do not implement early stopping, but the
best model based on evaluation of the evidence lower bound on the validation set, is
used for reporting final results. MFVI models are trained using five MC samples and the
local reparameterisation trick (Kingma et al., 2015), and prediction for both MCDO and
MFVI is based on 10 MC samples. For MCDO models a fixed dropout probability of 0.1
is used. Unless otherwise specified, DUNs use a uniform categorical prior over depth,
while MFVI networks use a N (0, I) prior over weights. These hyperparameter settings
largely follow those used for the toy regression problems.

All experiments are repeated 40 times with different weight initialisations and train-
test splits (with the exception of experiments on the Protein dataset, which are repeated
only 30 times due to the cost of evaluation on the larger test set). Unless otherwise
specified, we report the mean and standard deviation of the relevant metric over the
repeated experiment runs.

To choose the proposal distribution temperature, we ran an ablation study. Figure A.2
shows the test NLL for DUNs using different temperatures T for the proposal distribution.
The magnitude of T controls how deterministic the resulting sampling is—a a larger
T corresponds to more certainly selecting the point with the highest Bayesian Active
Learning by Disagreement (BALD) score, while a smaller T is closer to uniform sampling.
A temperature of T = 10 yields the best performance for most datasets.

A.2.6 Datasets

We employ the following datasets in Chapter 3.

Regression:

• UCI with standard splits (Hernández-Lobato and Adams, 2015)

• UCI with gap splits (Foong et al., 2019)

• Flights (Hensman et al., 2013)



A.2 Experimental Setup 161

100 200 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

N
L

L

Boston

T = 1
T = 10
T = 100
T = 1,000
T = 10,000

200 400 600

0.2

0.4

0.6

0.8

1.0
Concrete

100 200 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

N
L

L

Boston

T = 1
T = 10
T = 100
T = 1,000
T = 10,000

200 400 600

0.8

0.9

1.0

1.1

1.2

Te
st

N
L

L

Kin8nm

200 400 600

−0.1

0.0

0.1

Naval

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
Train set size

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
°0.6

°0.4

°0.2

0.0

0.2

Energy

200 400 600
Train set size

1.20

1.25

1.30

1.35

Wine

50 100 150 200
Train set size

−0.50

−0.25

0.00

0.25

0.50

0.75

Yacht

Figure A.2: Test NLLs of DUNs using a stochastic relaxation of BALD. Different temperatures
of the proposal distribution are compared. Means of 40 runs of the experiments are shown;
standard deviations are not plotted for clarity.

Image Classification:

• MNIST (LeCun et al., 1989)

• FashionMNIST (Xiao et al., 2017)

• KMNIST (Clanuwat et al., 2018)

• CIFAR10/100 (Krizhevsky, 2009) and Corrupted CIFAR (Hendrycks and Dietterich,
2019)

• SVHN (Netzer et al., 2011)





Appendix B

Subnetwork Inference Details

B.1 Updating the prior precision for uncertainty esti-
mation with subnetworks

As described in Section 4.3, the linearised Laplace method can be understood as ap-
proximating our NN with a basis function linear model, where the Jacobian of the
NN evaluated at x, J(x) ∈ RO×D represents the feature expansion. When employing
an Isotropic Gaussian prior with precision λ and for a given output dimension i, this
formulation corresponds to a Gaussian Process (GP) with kernel

ki(x,x
′) = λ−1J(x)iJ(x

′)⊤i = λ−1

D∑
d=1

J(x)i,dJ(x
′)i,d. (B.1)

For our subnetwork model, the Jacobian feature expansion is JS(x) ∈ RO×S, which is a
submatrix of J(x). It follows that the implied kernel will be computed in the same way
as (B.1), removing D − S terms from the sum. The updated prior precision λS = λ·S/D
aims to maintain the magnitude of the sum, thus making the kernel corresponding to
the subnetwork as similar as possible to that of the full network.

B.2 Experimental Setup

B.2.1 Toy Experiments

We train a single, 2-hidden-layer network, with 50 hidden ReLU units per layer using
MAP inference until convergence. Specifically, we use Stochastic Gradient Descent (SGD)
with a learning rate of 1×10−3, momentum of 0.9 and weight decay of 1×10−4. We use a



164 Subnetwork Inference Details

batch size of 512. The objective we optimise is the Gaussian log-likelihood of our data,
where the mean is outputted by the network and the the variance is a hyperparameter
learnt jointly with NN parameters by SGD. This variance parameter is shared among
all data points. Once the network is trained, we perform post-hoc inference on it using
different approaches. Since all of these involve the linearised approximation, the mean
prediction is the same for all methods. Only their uncertainty estimates vary.

Note that while for this toy example, we could in principle use the full covariance
matrix for the purpose of subnetwork selection, we still just use its diagonal (as described
in Section 4.5) for consistency. We use Generalized Gauss-Newton (GGN) Laplace
inference over network weights (not biases) in combination with the linearised predictive
distribution in (4.16). Thus, all approaches considered share their predictive mean,
allowing us to better compare their uncertainty estimates.

All approaches share a single prior precision of λ = 3, scaled as λS = λ · S/D. We
choose this prior precision such that the full covariance approach (optimistic baseline),
where λS = λ, presents reasonable results. We first tried a precision of 1 and found the
full covariance approach to produce excessively large error bars (covering the whole plot).
A value of 3 produces more reasonable results.

Final layer inference is performed by computing the full Laplace covariance matrix
and discarding all entries except those corresponding to the final layer of the NN. Results
for random sub-network selection are obtained with a single sample from a scaled uniform
distribution over weight choice.

B.2.2 UCI Experiments

In this experiment, our fully connected NNs have numbers of hidden layers hd = {1, 2}
and hidden layer widths wd = {50, 100}. For a dataset with input dimension id, the
number of weights is given by D = (id + 1)wd + (hd − 1)w2

d. Our 2-hidden-layer, 100-
hidden-unit models have a weight count of the order 104. The non-linearity used is
ReLU.

We first obtain a MAP estimate of each model’s weights. Specifically, we use SGD
with a learning rate of 1×10−3, momentum of 0.9 and weight decay of 1×10−4. We use a
batch size of 512. The objective we optimise is the Gaussian log-likelihood of our data,
where the mean is outputted by the network and the the variance is a hyperparameter
learnt jointly with NN parameters by SGD.

For each dataset split, we set aside 15% of the train data as a validation set. We use
these for early stopping training. Training runs for a maximum of 2000 epochs but early
stops with a patience of 500 if validation performance does not increase. For the larger



B.2 Experimental Setup 165

Protein dataset, these values are 500 and 125. The weight settings which provide the
best validation performance are kept.

We then perform full network GGN Laplace inference for each model. We also use
our proposed Wassertein rule together with the diagonal Hessian assumption to prune
every network’s weight variances such that the number of variances that remain matches
the size of every smaller network under consideration. The prior precision used for
these steps is chosen such that the resulting predictor’s log likelihood performance on
the validation set is maximised. Specifically, we employ a grid search over the values:
λ : [0.0001, 0.001, 0.1, 0.5, 1, 2, 5, 10, 100, 1000]. In all cases, we employ the linearised
predictive in (4.16). Consequently, networks with the same number of weights make the
same mean predictions. Increasing the number of weight variances considered will thus
only increase predictive uncertainty.

B.2.3 Image Experiments

The results shown in Section 4.6.3 are obtained by training ResNet-18 (and ResNet-50)
models using SGD with momentum. For each experiment repetition, we train 7 different
models: ‘MAP’, ‘Ours’, ‘Ours (Rand)’, ‘Stochastic Weight Averaging Gaussian (SWAG)’,
‘Diag-Laplace’. We train 4 additional ‘Ensemble’ elements, 1 network with ‘Dropout’,
and, finally, 1 network for ‘Variational Online Gauss-Newton (VOGN)’. The methods
‘Ours’, ‘Ours (Rand)’, ‘SWAG’, and ‘Diag-Laplace’ are applied post-training.

For all methods except ‘VOGN’ we use the following training procedure. The (initial)
learning rate, momentum, and weight decay are 0.1, 0.9, and 1×10−4, respectively. For
‘MAP’ we use 4 Nvidia P100 GPUs with a total batch size of 2048. For the calculation of
the Jacobian in the subnetwork selection phase we use a single P100 GPU with a batch
size of 4. For the calculation of the hessian we use a single P100 GPU with a batch size of
2. We train on 1 Nvidia P100 GPU with a batch size of 256 for all other methods. Each
dataset is trained for a different number of epochs, shown in Table B.1. We decay the
learning rate by a factor of 10 at scheduled epochs, also shown in Table B.1. Otherwise,
all methods and datasets share hyperparameters. These hyperparameter settings are
the defaults provided by PyTorch for training on ImageNet. We found them to perform
well across the board. We report results obtained at the final training epoch. We do not
use a separate validation set to determine the best epoch as we found ResNet-18 and
ResNet-50 to not overfit with the chosen schedules.

For ‘Dropout’, we add dropout to the standard ResNet-50 model (He et al., 2016a)
in between the 2nd and 3rd convolutions in the bottleneck blocks. This approach fol-
lows Zagoruyko and Komodakis (2016) and Ashukha et al. (2020), who add dropout



166 Subnetwork Inference Details

Table B.1: Per-dataset training configuration for image experiments.

Dataset No. Epochs LR Schedule

MNIST 90 40, 70
CIFAR10 300 150, 225

in between the two convolutions of a WideResNet-50’s basic block. Following Antorán
et al. (2020), we choose a dropout probability of 0.1, as they found it to perform better
than the value of 0.3 suggested by Ashukha et al. (2020). We use 16 Monte Carlo
(MC) samples for predictions. ‘Ensemble’ uses 5 elements for prediction. Ensemble
elements differ from each other in their initialisation, which is sampled from the He
initialisation distribution (He et al., 2015). We do not use adversarial training as, in
line with Ashukha et al. (2020), we do not find it to improve results. For ‘VOGN’
we use the same procedure and hyper-parameters as used by Osawa et al. (2019) in
their CIFAR10 experiments, with the exception that we use a learning rate of 1×10−3

as we we found a value of 1×10−4 not to result in convergence. We train on a single
Nvidia P100 GPU with a batch size of 256. See the authors’ GitHub for more de-
tails: github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/
classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json.

We modify the standard ResNet-50 and ResNet-18 architectures such that the first
7×7 convolution is replaced with a 3×3 convolution. Additionally, we remove the
first max-pooling layer. Following Goyal et al. (2017), we zero-initialise the last batch
normalisation layer in residual blocks so that they act as identity functions at the start
of training.

At test time, we tune the prior precision used for ‘Ours’, ‘Diag-Laplace’ and ‘SWAG’
approximation on a validation set for each approach individually, as in Ritter et al. (2018);
Kristiadi et al. (2020). We use a grid search from 1×10−4 to 1×104 in logarithmic steps,
and then a second, finer-grained grid search between the two best-performing values
(again with logarithmic steps).

B.2.4 Datasets

The 1d toy dataset used in Section 4.6.1 was taken from Antorán et al. (2020). We
obtained it from the authors’ GitHub repo: https://github.com/cambridge-mlg/DUN.
Table B.2 summarises the datasets used in Section 4.6.2.

We employ the Wine, Kin8nm and Protein datasets, together with their gap variants,
because we find our models’ performance to be most dependent on the quality of the

https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/cambridge-mlg/DUN


B.2 Experimental Setup 167

estimated uncertainty here. On most other commonly used UCI regression datasets
(Hernández-Lobato and Adams, 2015) we find increased uncertainty to hurt LL perfor-
mance. In other words, the predictions made when using the MAP setting of the weights
are better than those from any Bayesian ensemble. For the standard splits (Hernández-
Lobato and Adams, 2015) 90% of the data is used for training and 10% for validation.
For the gap splits (Foong et al., 2019) a split is obtained per input dimension by ordering
points by their values across that dimension and removing the middle 33% of the points.
These are used for validation.

The datasets used for our image experiments are outlined in Table B.3.

Table B.2: Datasets from tabular regression used in Section 4.6.2

Dataset N Train N Val (15% train) N Test Splits Output Dim Output Type Input Dim Input Type

Wine 1223 216 160 20 1 Continous 11 Continous
Wine Gap 906 161 532 11 1 Continous 11 Continous
Kin8nm 6267 1106 819 20 1 Continous 8 Continous

Kin8nm Gap 4642 820 2730 8 1 Continous 8 Continous
Protein 34983 6174 4573 5 1 Continous 9 Continous

Protein Gap 25913 4573 15244 9 1 Continous 9 Continous

Table B.3: Summary of image datasets. The test and train set sizes are shown in brackets,
e.g., (test & train).

Name Size Input Dim. No. Classes No. Splits

MNIST (LeCun et al., 1989) 70,000 (60,000 & 10,000) 784 (28 × 28) 10 2
Fashion-MNIST (Xiao et al., 2017) 70,000 (60,000 & 10,000) 784 (28 × 28) 10 2
CIFAR10 (Krizhevsky, 2009) 60,000 (50,000 & 10,000) 3072 (32 × 32 × 3) 10 2
SVHN (Netzer et al., 2011) 99,289 (73,257 & 26,032) 3072 (32 × 32 × 3) 10 2





Appendix C

Sparse MoE Details

C.1 Experiment Settings

C.1.1 ViT Model Specifications

Following Dosovitskiy et al. (2021), we recall the specifications of the Vision Transformer
(ViT) models of different scales in Table C.1.

Table C.1: Specifications of ViT-S, ViT-B, ViT-L and ViT-H.

Hidden dimension MLP dimension # layers

Small 512 2048 8
Base 768 3072 12
Large 1024 4096 24
Huge 1280 5144 32

C.1.2 Upstream Setting

For all our upstream experiments, we scrupulously follow the setting described in Riquelme
et al. (2021), see their Section B.2 in their appendix. For completeness, we just recall that
S/32 models are trained for 5 epochs while B/{16, 32} and L/32 models are trained for 7
epochs. For L/16 models, both 7 and 14 epochs can be considered (Dosovitskiy et al.,
2021; Riquelme et al., 2021); we opted for 7 epochs given the breadth of our experiments.
Finally, the H/14 model is trained for 14 epochs.

In particular, the models are all trained on JFT-300M (Sun et al., 2017). This dataset
contains about 305M training and 50 000 validation images. The labels have a hierarchical
structure, with a total of 18 291 classes, leading to 1.89 labels per image on average.



170 Sparse MoE Details

C.1.3 Downstream Setting

During fine-tuning, there are a number of common design choices we apply. In particular:

• Image resolution: 384.

• Clipping gradient norm at: 10.0.

• Optimizer: Stochastic Gradient Descent (SGD) with momentum (using half-
precision, β = 0.9).

• Batch size: 512.

• For Vision-MoE (V-MoE) models, we fine-tune with capacity ratio C = 1.5 and
evaluate with C = 8.

We use the following train/validation splits depending on the dataset:

Dataset Train Dataset Fraction Validation Dataset Fraction

ImageNet 99% 1%
CIFAR10 98% 2%
CIFAR100 98% 2%

Oxford-IIIT Pets 90% 10%
Oxford Flowers-102 90% 10%

All of the above design choices follow from Riquelme et al. (2021) and Dosovitskiy et al.
(2021).

C.1.4 Hyperparameter Sweep for Fine-tuning

In all our fine-tuning experiments, we use the sweep of hyperparameters described in
Table C.2. We use the recommendations from Dosovitskiy et al. (2021) and Riquelme
et al. (2021), further considering several factors {0.5, 1.0, 1.5, 2.0} to sweep over different
numbers of steps. Riquelme et al. (2021) use a half schedule (with the factor 0.5) while
Dosovitskiy et al. (2021) take the factor 1.0.

C.1.5 Details about the (Linear) Few-shot Evaluation

We follow the evaluation methodology proposed by Dosovitskiy et al. (2021); Riquelme
et al. (2021), which we recall for completeness. Let us rewrite our model f with parameters



C.1 Experiment Settings 171

Table C.2: Hyperparameter values for fine-tuning on different datasets. Compared with
Dosovitskiy et al. (2021) and Riquelme et al. (2021), we further consider several factors {0.5,
1.0, 1.5, 2.0} to sweep over different numbers of steps. We also apply a dropout rate of 0.1 to
the expert Multi-Layer Perceptrons (MLPs).

Dataset Steps Base LR

ImageNet 20 000 × {0.5, 1.0, 1.5, 2.0} {0.0024, 0.003, 0.01, 0.03}
CIFAR10 5 000 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03}
CIFAR100 5 000 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03}
Oxford-IIIT Pets 500 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03}
Oxford Flowers-102 500 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03}

θ = {Q,θ′} as
f(x;θ) = softmax(Qϕ(x;θ′))

where Q ∈ RC×S corresponds to the parameters of the last layer of f with the S-
dimensional representation ϕ(x;θ′) ∈ RS.

In linear few-shot evaluation, we construct a linear classifier to predict the target
labels (encoded as one-hot vectors) from the S-dimensional feature vectors induced by
ϕ(·;θ′); see Chapter 5 in Hastie et al. (2017) for more background about this type of
linear classifier. This evaluation protocol makes it possible to evaluate the quality of the
representations ϕ learned by f .

While Dosovitskiy et al. (2021); Riquelme et al. (2021) essentially focus on the quality
of the representations learned upstream on JFT by computing the (linear) few-shot
accuracy on ImageNet, we are interested in the representations after fine-tuning on
ImageNet. As a result, we consider a collection of 8 few-shot datasets (that do not
contain ImageNet):

• Caltech-UCSD Birds 200 (Wah et al., 2011) with 200 classes,

• Caltech 101 (Bansal et al., 2021) with 101 classes,

• Cars196 (Krause et al., 2013) with 196 classes,

• CIFAR100 (Krizhevsky, 2009) with 100 classes,

• Colorectal histology (Kather et al., 2016) with 8 classes,

• Describable Textures Dataset (Cimpoi et al., 2014) with 47 classes,

• Oxford-IIIT pet (Parkhi et al., 2012) with 37 classes and



172 Sparse MoE Details

• UC Merced (Yang and Newsam, 2010) with 21 classes.

In the experiments, we compute the few-shot accuracy for each of the above datasets
and we report the averaged accuracy over the datasets, for various number of shots in
{1, 5, 10, 25}. As commonly defined in few-shot learning, we understand by s shots a
setting wherein we have access to s training images per class label in each of the datasets.

To account for the different scales of accuracy across the 8 datasets, we also tested
to compute a weighted average, normalising by the accuracy of a reference model (ViT-
B/32). This is reminiscent of the normalisation carried out in Hendrycks and Dietterich
(2019) according to the score of AlexNet. We found the conclusions with the standard
average and weighted average to be similar.

For an ensemble with M members, we have access to M representations {ϕ(x;θ′m)}Mm=1

for a given input x. We concatenate the M representations {ϕ(x;θ′m)}Mm=1 into a single
“joint” feature vector in RM ·S, remembering that each ϕ(x;θ′m) ∈ RS. We then train a
single linear classifier to predict the target labels from the “joint” feature vectors.

C.1.6 List of Datasets

For completeness, in addition to the few-shot datasets listed in Section C.1.5, we list the
datasets used for downstream training and evaluation in this work.

• ImageNet (ILSVRC2012) (Deng et al., 2009) with 1000 classes and 1281167 training
examples.

• ImageNet-C (Hendrycks and Dietterich, 2019), an ImageNet test set constructed by
applying 15 different corruptions at 5 levels of intensity to the original ImageNet
test set. (We report the mean performance over the different corruptions and
intensities.)

• ImageNet-A (Hendrycks et al., 2021), an ImageNet test set constructed by collecting
new data and keeping only those images which a ResNet-50 classified incorrectly.

• ImageNet-V2 (Recht et al., 2019), an ImageNet test set independently collected
using the same methodology as the original ImageNet dataset.

• CIFAR10 (Krizhevsky, 2009) with 10 classes and 50000 training examples.

• CIFAR10-C (Hendrycks and Dietterich, 2019), a CIFAR10 test set constructed by
applying 15 different corruptions at 5 levels of intensity to the original CIFAR10
test set. (We report the mean performance over the different corruptions and
intensities.)



C.2 Compatibility and Adaptation of the Upstream Checkpoints 173

• CIFAR100 (Krizhevsky, 2009) with 100 classes and training 50000 examples.

• Oxford Flowers 102 (Nilsback and Zisserman, 2008) with 102 classes and 1020
training examples.

• Oxford-IIIT pet (Parkhi et al., 2012) with 37 classes and 3680 training examples.

• SVHN (Netzer et al., 2011) with 10 classes.

• Places365 (Zhou et al., 2017) with 365 classes.

• Describable Textures Dataset (DTD) (Cimpoi et al., 2014) with 47 classes.

C.1.7 Sparse MoEs meet Ensembles Experimental Details

The setup for the experiments in Figures C.2 and 5.2 differs slightly from the other
experiments in this work. Specifically, while for all other experiments we used upstream
V-MoE checkpoints with (K,E) = (2, 32), for these experiments we matched the upstream
and downstream checkpoints. We did this to avoid a checkpoint mismatch as a potential
confounder in our results.

C.1.8 Multiple Predictions without Tiling or Partitioning Details

The naive multi-pred method presented in Section 5.4.2 was trained in almost the
same manner as the vanilla V-MoE, the only difference being the handling of multiple
predictions. This was accomplished by using the average ensemble member cross entropy
as described for Efficient Ensemble of Experts (e3) in Section C.3. In contrast, in order
to compute the evaluation metrics presented in Table 5.4, we first averaged predictions
of the model and then used the average prediction when calculating each metric.

C.2 Compatibility and Adaptation of the Upstream
Checkpoints

Throughout the Chapter 5, we make the assumption that we can start from existing
checkpoints of ViT and V-MoE models (trained on JFT-300M; see Section C.1.2). We
next describe how we can use those checkpoints for the fine-tuning of the extensions of
ViT and V-MoE that we consider in this chapter.



174 Sparse MoE Details

In all our experiments that involve V-Mixtures of Experts (MoEs), we consider
checkpoints with K = 2 and E = 32, which is the canonical setting advocated by
Riquelme et al. (2021).

C.2.1 Efficient Ensemble of Experts

In the case of e3, the set of parameters is identical to that of a V-MoE model. In
particular, neither the tiled representation nor the partitioning of the experts transforms
the set of parameters.

To deal with the fact that the single routing function gateK(W ·) of a V-MoE becomes
separate routing functions {gateK(Wm·)}Mm=1, one for expert subset Em, we simply slice
row-wise W ∈ RE×D into the M matrices Wm ∈ R(E/M)×D.

C.2.2 Batch Ensembles (BE)

We train Batch Ensemble (BE) starting from ViT checkpoints, which requires to introduce
downstream-specific parameters. Following the design of V-MoEs, we place the batch-
ensemble layers in the MLP layers of the Transformer.

Let us consider a dense layer in one of those MLPs, with parameters U ∈ RD×L, in
absence of a bias term. In BE, the parametrization of each ensemble member has the
following structure Um = U ◦ (rms⊤m) where {rm}Mm=1 and {sm}Mm=1 are respectively D-
and L-dimensional vectors.

A standard ViT checkpoint provides pre-trained parameters for U . We then introduce
{rm}Mm=1 and {sm}Mm=1 at fine-tuning time, following the random initialization schemes
proposed in Wen et al. (2020); see details in the hyperparameter sweep for BE in
Section C.7.1.

C.2.3 MIMO

We train Multi-input Multi-output (MIMO) models from V-MoE checkpoints. The
only required modifications are to the input and output parameters of the checkpoints.
The linear input embedding must be modified to be compatible with input images
containing M times as many channels, as required by the multiple-input structure of
MIMO. Similarly, the final dense layer in the classification head must be modified to
have M times more output units, following the multiple-output structure in MIMO.

Concretely, the embedding weight Win ∈ RH×W×3×D is replicated in the third (chan-
nel) dimension, resulting in WMIMO,in ∈ RH×W×3·M×D, where H and W are the height



C.3 Implementation Details of Efficient Ensemble of Experts 175

and width of the convolution and D is the hidden dimension of the ViT family (specified
in Table C.1). The output layer weight Wout ∈ RD×C is replicated in the second (output)
dimension, resulting in WMIMO,out ∈ RH×C·M , where C is the number of classes. The
output layer bias bout ∈ RC is replicated resulting in bMIMO,out ∈ RC×M . Finally, in order
to preserve the magnitude of the activation for these layers, WMIMO,in and WMIMO,out

are scaled by 1/M .

C.3 Implementation Details of Efficient Ensemble of
Experts

We provide details about the training loss and the regulariser used by e3. We also discuss
the memory requirements compared to V-MoE.

C.3.1 Training Loss

Since e3 outputs M predictions {f(x;θm)}Mm=1 for a given input x, we need to adapt the
choice of the training loss L accordingly. Following the literature on efficient ensembles
(Wen et al., 2020; Dusenberry et al., 2020a; Wenzel et al., 2020b), we choose the average
ensemble-member cross entropy

L(y,x;θ) = 1

M

M∑
m=1

cross-entropy(y, f(x;θm))

instead of other alternatives, such as the ensemble cross-entropy

cross-entropy
(
y,

1

M

M∑
m=1

f(x;θm)
)

that was observed to generalise worse (Dusenberry et al., 2020a).

C.3.2 Auxiliary Losses

Inspired by previous applications of sparse MoEs in NLP (Shazeer et al., 2017), Riquelme
et al. (2021) employ regularisers, also referred to as auxiliary losses, to guarantee a
balanced usage of the E experts. Two auxiliary losses—the importance and load losses,
see Appendix A in Riquelme et al. (2021) for their formal definitions—are averaged
together to form the final regularisation term that we denote by Ω.



176 Sparse MoE Details

As a reminder, let us recall the notation of the routing function

h ∈ RD 7→ gateK(Wh) = topK(softmax(Wh+ σε)) ∈ RE,

with W ∈ RE×D and ε ∼ N (0, I). Consider a batch of B inputs {hi}Bi=1 that we
represent by H ∈ RB×D. Finally, let us define

A =HW⊤ + σεB×E ∈ RB×E,

where we emphasise that εB×E is a matrix of Gaussian noise entries in RB×E. The
regularisation term Ω used by Riquelme et al. (2021) can be seen as a function that
depends on A and HW⊤.

In the context of efficient ensemble of experts, the set of E experts is partitioned into
M subsets of E/M experts, denoted by ∪Mm=1Em; see Section 5.4.1. With the introduction
of the M routing functions {gateK(Wm·)}Mm=1 with each Wm ∈ R(E/M)×D, the matrix
A becomes accordingly partitioned into {Am}Mm=1 where each Am ∈ RB×(E/M).

Since we want to enforce a balanced usage of the E/M experts in each subset Em of
the experts, we thus redefine the regularisation as the average regularisation separately
applied to each part of the partition

Ωpartition(A,HW⊤) =
1

M

M∑
m=1

Ω(Am,HW
⊤
m ).

We found this option to work better in practice. To guarantee a fair comparison, we also
applied Ωpartition to the “Only partitioning” model in the ablation study of Section 5.4.2.

Following Riquelme et al. (2021), the regularisation parameter controlling the strength
of Ωpartition was set to 0.01 throughout the experiments.

C.3.3 Memory Requirements versus V-MoE

Due to tiling, e3 requires more memory than V-MoE. To be concrete, the memory
complexity of V-MoE can be decomposed into two terms

O
(
memoryparams + memoryactivations

)
,

for the forward and backward passes, respectively. For e3, the complexity becomes

O
(
memoryparams + memoryactivations ×

Lbefore + Lafter ×M

Ltotal

)
,



C.4 Efficient Ensemble of Experts and V-MoE Relative Improvements per ViT Family177

where M is the ensemble size, and Lbefore, Lafter, and Ltotal are the number of layers
before tiling, after tiling, and in total, respectively. Importantly, neither memoryparams

nor memoryactivations depend on M . Thanks to the “last-n” setting employed in the paper,
we have Lafter ≪ Lbefore, and thus the increase in memory due to tiling remains mild.
More concretely, for ViT-L, we have Ltotal = 24, Lbefore = 21, and Lafter = 3 (with MoE
layers placed at layers 22 and 24). Thus, for an ensemble of size M = 2, e3 would only
increase memoryactivations by 12.5%, while leaving memoryparams unchanged.

C.4 Efficient Ensemble of Experts and V-MoE Relative
Improvements per ViT Family

In Section 5.5 we claim that e3 performs best at the largest scale. In this section, we
motivate that claim in more detail. Specifically, we consider two metrics of improvement in
performance. Firstly, we consider the percentage improvement in Negative Log Likelihood
(NLL) for both e3 and V-MoE versus vanilla ViT. Secondly, we consider a normalised
version of this improvement. We consider this second metric to take into account the
“difficulty” in further improving the NLL of larger ViT family models. Intuitively, the
larger the ViT family, the better the corresponding NLL will be, and the more difficult it
will be to improve on that NLL.

The normalisation we apply is based on the gradient of the NLL with respect to
Floating Point Operations Per Second (FLOPs). Indeed, this gradient captures the
typical variation of NLL at a particular amount of FLOPs. The ratio of this gradient at
the FLOPs values (i.e., the instantaneous change in NLL at those FLOPs values) for two
ViT families is a measure of the relative difficulty in increasing the NLL. Thus, we can
use this ratio to normalise our results. To be more concrete, let us define the mapping

NLL = φ(FLOPs) and its derivative φ′(FLOPs) =
dφ(FLOPs)

dFLOPs
.

We estimate φ and its gradient by fitting a linear model to the (NLL,FLOPs) pairs for
each ViT family, using the data of the standard ViT models we trained. We use feature
expansion [1.0, log(FLOPs), log(FLOPs)2, log(FLOPs)3] and solve for the parameters of
the linear model via ordinary least squares. We determine the gradient of this function at
each FLOPs value using automatic differentiation in JAX. See Figure C.1 for the resulting
fit and an indication of the gradients.



178 Sparse MoE Details

0 1000 2000 3000

(downstream) GFLOPs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
LL

ϕ

Tangent
ViT

Figure C.1: Estimated φ compared to the ImageNet NLL values for our ViT models. We also
include the tangent at the points corresponding to each ViT model to indicate the gradients at
those points.

The normalised values are calculated as:

Normalised improvement(v) = improvement(v)× φ′(FLOPs H/14)

φ′(FLOPsv)
, (C.1)

where v is one of the ViT families, i.e., S/32, B/32, L/32, L/16, or H/14. Note that
this normalisation leaves the improvement for H/14 the same. We tried to normalise
with respect to other choices of ViT family, different from H/14. Our conclusions are
robust in the sense that both the ordering and the monotonic behaviour with respect to
scale are preserved. Using the ratio for normalisation also has the advantage that the
normalisation is less sensitive to the particular parameterisation of φ.

Table C.3: Percentage improvements in NLL for e3 with (K,M) = (1, 2) and V-MoE with
K = 1 vs. ViT for families of increasing size. The top two rows show normalised improvements,
see (C.1), which take into consideration the increased difficulty of improving NLL for larger
ViT families whose performance is beginning to saturate. The bottom two rows are the original
percentage improvements without normalisation.

S/32 B/32 L/32 L/16 H/14

Normalised e3 vs. ViT 0.02% 0.09% 0.24% 2.35% 4.27%
V-MoE vs. ViT 0.01% 0.06% -0.04% 0.89% 0.02%

Not normalised e3 vs. ViT 9.82% 9.53% 3.76% 5.38% 4.27%
V-MoE vs. ViT 7.98% 6.62% -0.60% 2.05% 0.02%

Table C.3 shows both the difficulty-normalised and original improvements (without
normalisation). Looking first at the original improvements, we can see that while both e3

and V-MoE have smaller improvements over ViT for larger families, e3’s improvements



C.5 From Batch Ensembles to Sparse MoEs 179

decrease more slowly. Furthermore, by comparing the normalised improvements, we see
that e3’s improvements actually grow monotonically when taking difficulty into account.
This is not the case for V-MoE.

C.5 From Batch Ensembles to Sparse MoEs

Wen et al. (2020) have shown that, given a batch of B inputs X ∈ RB×P , a single forward
pass can efficiently compute the predictions of all the ensemble members {f(X;θm)}Mm=1.
By appropriately tiling the inputs of the network Xtiled ∈ R(M ·B)×P by a factor M , each
internal operation per ensemble member can then be vectorised.

We take the previous example of a dense layer with parameters U ∈ RD×L and we
assume the layer receives the tiled inputs {Hm}Mm=1 where Hm ∈ RB×D. We need to
compute for each ensemble member HmUm =Hm[U ◦ (rms⊤m)]. Denoting by hi,m ∈ RD

the i-th input in Hm, we have

h⊤
i,mUm =

E∑
e=1

ge(hi,m)·experte(hi,m) with M = E,

ge(hi,m) = 1 if e = m,

ge(hi,m) = 0 otherwise
(C.2)

and experte(z) = z
⊤[U ◦ (res⊤e )]. Although (C.2) may appear as a convoluted way of

writing the operations in batch ensembles, it unveils a connection with (5.1). Indeed,
operations in batch ensembles can be seen as a specific sparse MoE, e.g., with binary
routing weights depending only on the position in the tiled inputs. While Wen et al.
(2020) primarily tiled the inputs for the sake of efficiency, it also induces some form of
conditional computation, an insight that we exploit in e3.

C.6 Batch Ensembles versus Efficient Ensemble of Ex-
perts

Table C.4: Summary of the differences between BE and e3.

Shared Parameters Unique Parameters Tiling Training Epochs

BE Kernels in each linear layer “Fast-weights” and biases Start of the model Typically ≈50% more
e3 All parameters outside MoE layer Experts in subset Em Before 1st MoE layer Unchanged



180 Sparse MoE Details

While e3 is inspired in several ways by BE, it has also been specialised to sparse
MoEs. This leads to a number of significant differences between the two algorithms.
These differences are summarised in Table C.4, and we elaborate upon them here:

• Shared parameters: In BE, the shared parameters are the kernels in each linear
(e.g., dense or convolution) layer. This makes up the majority of the parameters in
BE. In e3, the shared parameters are all of those not found in the expert layers.

• Ensemble member specific parameters: BE uses pairs of “fast-weights” {rm, sm}
and bias terms for each linear layer. e3 uses the parameters of all the E/M experts
in the m-th subset Em and the router for those expert, in each MoE layer. This
results in a much larger set of ensemble member-specific parameters, and thus a
higher level of predictive diversity (see Section 5.4.2).

• Tiling: In BE, tiling is performed at the very beginning of the model, regardless
of the model’s internal structure. Tiling in e3 occurs before the first MoE layer,
thus saving redundant computation for “Last-n” V-MoE.

• Number of training epochs: BE usually requires 50% more training epochs
than a vanilla model. e3 requires the same number of training epochs as V-MoE.

C.7 Efficient Ensemble Comparisons

In this section, we compare efficient ensemble of experts (e3) to several popular efficient
ensemble approaches, namely MIMO (Havasi et al., 2020), BE (Wen et al., 2020), and
Monte Carlo (MC) Dropout (Gal and Ghahramani, 2016).

Table C.5 reports the ImageNet performance of those different techniques, when all
models are based on a ViT-B/32 architecture. We start by highlighting the most salient
conclusions of the experiment and defer to the next subsections the descriptions of the
different competing techniques.

We make the following observations:

• BE built upon ViT improves the performance of ViT in terms of NLL, classification
error and Expected Calibration Error (ECE). However, the resulting increase in
FLOPs makes BE a less viable option compared to e3.

• MC Dropout V-MoE is on par with standard V-MoE in terms of NLL and clas-
sification error, while it improves the ECE. For all values of K, we observe that
the performance tends to improve as the number of samples, i.e., M , increases.



C.7 Efficient Ensemble Comparisons 181

Table C.5: ImageNet performance of different efficient ensemble approaches. The table reports
the means ± standard errors over 8 replications. All models have a ViT-B/32 architecture. K
stands for the sparsity in V-MoEs, M denotes the ensemble size while “BR” corresponds to the
batch repetition in MIMO (Havasi et al., 2020).

K M NLL ↓ Error ↓ ECE ↓ KL ↑ GFLOPs ↓
ViT – – 0.688 ± 0.003 18.65 ± 0.08 0.022 ± 0.000 – 78.0

BE ViT – 2 0.682 ± 0.003 18.47 ± 0.05 0.021 ± 0.000 0.040 ± 0.001 97.1
– 4 0.675 ± 0.003 18.40 ± 0.09 0.017 ± 0.000 0.035 ± 0.001 135.4

V-MoE

1 – 0.642 ± 0.002 16.90 ± 0.05 0.029 ± 0.001 – 82.4
2 – 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 – 94.9
4 – 0.636 ± 0.001 16.70 ± 0.04 0.034 ± 0.001 – 120.1
8 – 0.635 ± 0.002 16.72 ± 0.06 0.028 ± 0.001 – 170.4

MC Dropout V-MoE

1 2 0.648 ± 0.002 17.10 ± 0.05 0.019 ± 0.001 0.046 ± 0.000 97.2
1 4 0.641 ± 0.002 16.96 ± 0.05 0.017 ± 0.001 0.046 ± 0.001 135.6
2 2 0.642 ± 0.002 16.94 ± 0.04 0.021 ± 0.001 0.046 ± 0.001 113.7
2 4 0.634 ± 0.001 16.80 ± 0.03 0.020 ± 0.000 0.046 ± 0.001 168.6
4 2 0.639 ± 0.002 16.91 ± 0.06 0.022 ± 0.001 0.045 ± 0.001 146.7

MIMO V-MoE (BR=1) 2 2 0.636 ± 0.002 16.97 ± 0.04 0.028 ± 0.001 0.000 ± 0.000 96.3
2 4 0.672 ± 0.001 17.72 ± 0.04 0.037 ± 0.000 0.001 ± 0.000 99.0

MIMO V-MoE (BR=2) 2 2 0.638 ± 0.001 17.14 ± 0.03 0.031 ± 0.000 0.001 ± 0.000 192.6
2 4 0.665 ± 0.002 17.38 ± 0.04 0.038 ± 0.000 0.000 ± 0.000 198.1

e3

1 2 0.622 ± 0.001 16.70 ± 0.03 0.018 ± 0.000 0.217 ± 0.003 105.9
1 4 0.624 ± 0.001 16.99 ± 0.03 0.013 ± 0.000 0.164 ± 0.001 153.0
2 2 0.612 ± 0.001 16.49 ± 0.02 0.013 ± 0.000 0.198 ± 0.003 131.1
2 4 0.620 ± 0.001 16.86 ± 0.02 0.015 ± 0.000 0.170 ± 0.001 203.3
4 2 0.611 ± 0.001 16.45 ± 0.03 0.014 ± 0.000 0.193 ± 0.003 181.4

However, already for M in {2, 4}, the resulting increase in FLOPs makes MC
Dropout V-MoE a less favourable option compared to e3.

• Perhaps surprisingly (see detailed investigations in Section C.7.3), MIMO V-MoE
does not lead to improvements compared with V-MoE. In fact, for higher ensemble
sizes, MIMO V-MoE results in worse performance than standard V-MoE. Moreover,
increasing the batch repetition parameter of MIMO (“BR” in Table C.5) further
worsens the results. Interestingly, we can see that MIMO does not manage to
produce diverse predictions, as illustrated by the small values of KL.

• e3 offers the best performance vs. FLOPs trade-offs, e.g., when looking at (K,M) =

(1, 2) and (K,M) = (2, 2). We notably observe that the diversity of the predictions
in e3 is orders of magnitude larger than that of the other ensemble approaches.

We briefly recall the optimisation explained in Section 5.4.1 to save redundant
computations: In the “last-n” setting of Riquelme et al. (2021), it is sufficient to tile the



182 Sparse MoE Details

representations only when entering the first MoE layer/dropout layer/batch-ensemble
layer for respectively e3/MC Dropout V-MoE/BE. We apply this optimisation to all the
efficient ensemble methods.

C.7.1 Batch Ensembles

Following the design of V-MoEs, we place the batch-ensemble layers in the MLP layers of
the Transformer, following the “last-n” setting of Riquelme et al. (2021); see Section 5.2.1.

The vectors of the rank-1 parametrisation introduced at fine-tuning time (see Sec-
tion C.2) need to be initialised and optimised. Following the recommendation from Wen
et al. (2020), we consider the following hyperparameters in addition to the common
sweep described in Table C.2:

• Initialization: Either a random sign vector with entries in {−1, 1} independently
drawn with probability 1

2
or a random Gaussian vector with entries independently

drawn from N (1, 0.5).

• Learning-rate scale factor: The vectors of the rank-1 parametrisation are
updated with a learning rate scaled by a factor in {0.5, 1, 2}.

C.7.2 MC Dropout V-MoEs

For MC Dropout V-MoE, we take the available fine-tuned V-MoEs and enable dropout
at prediction time. Indeed, as described in Table C.2, all V-MoE models already have a
0.1 dropout rate in the experts.

C.7.3 MIMO V-MoEs

Following Havasi et al. (2020) we consider two MIMO-specific hyperparameters, in
addition to the hyperparameters listed in Table C.2:

• Input replication probability: {0.5, 0.625, 0.75}

• Batch repetitions: {1, 2}

Our preliminary investigations also considered lower input repetition probabilities and
higher batch repetitions. However, lower input repetition probabilities tended to result
in poorer performance. While higher batch repetitions did help to some extent, the
additional computational cost made it impractical.



C.7 Efficient Ensemble Comparisons 183

Given the surprising result that an ensemble size of M = 2 provides no performance
improvement over the standard V-MoE and that increasing M further provides worse
performance, there seems to be some incompatibility between MIMO and V-MoE. In
fact, our investigations revealed that ViT is the source of the problems since applying
MIMO to vanilla ViT without experts resulted in the same trends as for V-MoE. Thus,
we hypothesise that the differences between ViT and ResNet—the architecture to which
MIMO was originally applied by Havasi et al. (2020)—are responsible for MIMO’s poor
performance when applied to ViT.

Difference 1: Class token. One of the differences between ViT and ResNet is that
ViT makes use of a special learnable class token to classify an image (see Dosovitskiy
et al. (2021) for details). ResNet, on the other hand, makes use of the representation
from an entire image for classification. We tried two strategies to mitigate this difference:

1. We applied the global average pooling (GAP) and multi-head attention pooling
(MAP) classification strategies introduced in Dosovitskiy et al. (2021) and Zhai
et al. (2022), respectively. In short, both of these methods make use of all the
tokens from an image for classification. However, neither of these strategies made
a significant difference to the relative performance of MIMO and ViT. In fact,
the choice of classification method was the least impactful hyperparameter in our
sweep.

2. Rather than learning a single class token, we learnt M class tokens. This strategy
resulted in MIMO with M = 2 outperforming ViT. However, for M > 2 the
improvement was small enough that ViT still outperformed MIMO.

Difference 2: Attention. The other major difference between ViT and ResNet is the
building block for each model. While ResNets are primarily composed of convolution
operations, ViT makes heavy use of attention. We hypothesised that attention is less
suited to separating the information for M input images stored in the channel dimension
of a single image. We tried two strategies to mitigate this potential issue:

1. We applied the hybrid architecture, described in Dosovitskiy et al. (2021), in which
the input sequence to ViT is formed by CNN feature maps. We used ResNet-14
and ResNet-50. In both cases, we found that the strategy boosted the performance
of ViT and MIMO equally.

2. Rather than concatenating images in the channel dimension, we concatenated them
in the width dimension, resulting in 3 times as many patches for ViT to process.



184 Sparse MoE Details

This strategy was successful in the sense that the MIMO performance for M > 2

improved significantly. However, the significant additional computational cost made
it an infeasible solution.

Our findings suggest that MIMO and ViT are indeed somewhat incompatible. Unfor-
tunately, none of our proposed solutions to this problem provided high enough predictive
performance increases (or indeed low enough computational cost increases in some cases)
to warrant immediate further investigation.

C.8 Additional Experimental Results

In this section, we expand on various experiments presented in Sections 5.3 to 5.5. In
experiments considering multiple ViT families, we also include B/16, which was excluded
from the main text for clarity.

C.8.1 Static versus Adaptive Combination

Here we continue the investigation into static versus adaptive combination from Sec-
tion 5.3.

Individual gains with respect to E,K and M . Figure C.2 shows the effect of
increasing the various ‘ensemble size’ parameters for a deep ensemble of V-MoEs. In
particular, we investigate the static combination axis M (the number of ensemble
members), as well as the two adaptive axes—K (the number of experts chosen per patch)
and E (the total number of experts).

When investigating the effect of K, we fix E = 32 and average over M ∈ {1, .., 8}.
Similarly, when investigating M , we fix E = 32 and average over K ∈ {1, .., 8}. When
investigating the effect of E we fix K = 2 and average over M ∈ {1, .., 8}. As a result of
this procedure, the exact values of the curves are not directly comparable. However, we
can still examine the relative trends.

Specifically, we note that while the variation in K and M curves is roughly of the
same size, the variation in the E curve is smaller. We also note that there is very little
variation beyond E = 8 (note the difference in the scales of the axes for the curves).
These observations motivate the design of e3, where we split the sub-models along the E

axis, in order to better take advantage of the experts.



C.8 Additional Experimental Results 185

1 2 3 4 5 6 7 8
K/M

0.76

0.78

0.80

0.82

0.84

N
LL

NLL vs. 'ensemble size'

K
M
E

4 8 16 32
E

Figure C.2: Comparison for the impact on ImageNet NLL of variations in K, E and M . The
underlying model is ViT-S/32.

C.8.2 An Additional Motivating Experiment – Deep Ensembles
of V-MoE with Fewer Experts

As an additional motivation for combining sparse MoEs and ensembles, Table C.6
compares the performance of a V-MoE with E = 32 total experts and ensembles of
V-MoEs with (M = 2, E = 16) and (M = 4, E = 8), for both K = 1 and K = 2. We see
that, in terms of NLL, (M = 4, E = 8) is better than (M = 2, E = 16) which is in turn
better than (M = 1, E = 32). We see similar results for Error and ECE.

We note that this result is especially remarkable since the individual upstream (and
later, downstream) models are such that E = 8 is worse than E = 16, which in turn
performs worse than E = 32; ensembling thus manages to counterbalance the poorer
individual model performance. This suggests that the efficient ensembling—i.e., the
combination of multiple models within a single model—of sparse MoEs could lead to
strong performance while reducing computational costs.

Table C.6: Comparison of upstream deep ensembles of V-MoE-B/32 models with fewer experts.

K M E NLL ↓ Error ↓ ECE ↓ KL ↑

V-MoE

1
1 32 0.642 ± 0.002 16.90 ± 0.05 0.029 ± 0.001 –
2 16 0.588 15.97 0.015 0.211
4 8 0.577 15.82 0.017 0.228

2
1 32 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 –
2 16 0.583 15.75 0.016 0.211
4 8 0.580 15.94 0.015 0.184



186 Sparse MoE Details

C.8.3 The Roles of Ensemble Diversity and Individual Model
Performance

Table C.7 shows the individual member performance for each of our efficient ensemble
variants as well as upstream and downstream deep ensembles, for sizes M = 2 and
M = 4. For each method and ensemble size, the first row shows the combined ensemble
performance, and the following rows show the performance of the individual ensemble
members.

For e3, the gap between single members and their ensemble is considerable. This
is reminiscent of deep ensembles (both variants) and in stark contrast with what we
observe for the other efficient ensembles: BE ViT and MIMO V-MoE. The diversity of
e3 is comparable to that of upstream deep ensembles and much larger than downstream
deep ensembles. For example, if we compare MIMO V-MoE (M=2) and e3 (M=2), the
single members of e3 are all worse in NLL, ACC, and ECE than the single members of
MIMO. However, the performance gap between the individual members and the ensemble
is much larger for e3 than MIMO (where there is almost no difference). The diversity
of the individual models in e3 is key to its strong performance. Thus, e3 outperforms
MIMO.

In short, this suggests that e3 approximates a deep ensemble of smaller V-MoE models.
That is, with e3, we are able to take advantage of the overparameterization of the experts
to create a rich set of ensemble members within a single model. Each ensemble member
has a large number of non-shared parameters, thus high induced diversity. In comparison,
BE only has a few vectors specific to each member.



C.8 Additional Experimental Results 187

Table C.7: Comparison of the individual ensemble member performance and combined ensemble
performance for BE ViT, MIMO V-MoE (K = 2, BR=1), e3 (K = 1), as well as upstream and
downstream V-MoE (K = 1) ensembles.

NLL ↓ Error ↓ ECE ↓ KL ↑

BE ViT

M=2
ensemble 0.682 ± 0.003 18.47 ± 0.05 0.021 ± 0.000 0.040 ± 0.001

member 0 0.693 ± 0.003 18.68 ± 0.05 0.025 ± 0.000 —
member 1 0.693 ± 0.003 18.68 ± 0.04 0.025 ± 0.001 —

M=4

ensemble 0.675 ± 0.003 18.40 ± 0.09 0.017 ± 0.000 0.035 ± 0.001

member 0 0.690 ± 0.003 18.70 ± 0.09 0.022 ± 0.000 —
member 1 0.690 ± 0.003 18.70 ± 0.08 0.023 ± 0.000 —
member 2 0.690 ± 0.003 18.70 ± 0.07 0.023 ± 0.000 —
member 3 0.691 ± 0.003 18.70 ± 0.07 0.023 ± 0.000 —

MIMO V-MoE

M=2
ensemble 0.636 ± 0.002 16.97 ± 0.04 0.028 ± 0.001 0.001 ± 0.000

member 0 0.636 ± 0.002 16.97 ± 0.04 0.028 ± 0.001 —
member 1 0.636 ± 0.002 16.97 ± 0.04 0.028 ± 0.000 —

M=4

ensemble 0.672 ± 0.001 17.72 ± 0.04 0.037 ± 0.000 0.001 ± 0.000

member 0 0.672 ± 0.001 17.74 ± 0.05 0.037 ± 0.000 —
member 1 0.672 ± 0.001 17.71 ± 0.05 0.037 ± 0.000 —
member 2 0.672 ± 0.001 17.72 ± 0.05 0.037 ± 0.000 —
member 3 0.673 ± 0.001 17.73 ± 0.05 0.037 ± 0.000 —

e3

M=2
ensemble 0.622 ± 0.001 16.70 ± 0.03 0.018 ± 0.000 0.217 ± 0.003

member 0 0.671± 0.003 17.74 ± 0.06 0.038 ± 0.001 —
member 1 0.683 ± 0.002 17.94 ± 0.005 0.038 ± 0.001 —

M=4

ensemble 0.624 ± 0.001 16.99 ± 0.03 0.013 ± 0.000 0.164 ± 0.001

member 0 0.677 ± 0.002 18.04 ± 0.05 0.034 ± 0.001 —
member 1 0.685 ± 0.001 18.23 ± 0.05 0.034 ± 0.001 —
member 2 0.691 ± 0.002 18.35 ± 0.07 0.035 ± 0.001 —
member 3 0.697 ± 0.002 18.47 ± 0.08 0.035 ± 0.001 —

Up-DE

M=2
ensemble 0.588 ± 0.001 15.74 ± 0.05 0.017 ± 0.001 0.214 ± 0.001

member 0 0.640 ± 0.001 16.82 ± 0.04 0.030 ± 0.000 —
member 1 0.645 ± 0.002 16.97 ± 0.06 0.029 ± 0.002 —

M=4

ensemble 0.561 ± 0.001 15.10 ± 0.03 0.020 ± 0.000 0.214 ± 0.001

member 0 0.639 ± 0.001 16.80 ± 0.03 0.030 ± 0.000 —
member 1 0.641 ± 0.001 16.84 ± 0.05 0.030 ± 0.000 —
member 2 0.642 ± 0.001 16.90 ± 0.03 0.031 ± 0.000 —
member 3 0.647 ± 0.002 17.05 ± 0.06 0.028 ± 0.002 —

Down-DE

M=2
ensemble 0.620 ± 0.001 16.44 ± 0.04 0.023 ± 0.000 0.073 ± 0.001

member 0 0.642 ± 0.001 16.83 ± 0.03 0.030 ± 0.000 —
member 1 0.643 ± 0.001 16.84 ± 0.03 0.030 ± 0.000 —

M=4

ensemble 0.607 ± 0.000 16.17 ± 0.02 0.021 ± 0.001 0.073 ± 0.000

member 0 0.641 ± 0.001 16.82 ± 0.03 0.030 ± 0.000 —
member 1 0.642 ± 0.001 16.85 ± 0.03 0.030 ± 0.000 —
member 2 0.643 ± 0.001 16.89 ± 0.04 0.031 ± 0.000 —
member 3 0.643 ± 0.001 16.93 ± 0.07 0.031 ± 0.000 —



188 Sparse MoE Details

C.8.4 Extended Results for Few-shot Learning

In Figure C.3, we extend the few-shot learning results of Figure 5.4 to also include 1,
5, and 25-shot. Additionally, we show results for the weighted aggregation strategy
mentioned in Section C.1.5.

We confirm the result that the few-shot performance for e3 gets better, relative to the
other baselines, with larger ViT families. Additionally, we see that e3 performance seems
to get better, again relative to the other baselines, with more shots. This phenomenon
can most easily be noticed by comparing the results for S/32 across different numbers of
shots. Finally, we see that the trends with and without the weighted mean are the same.

30

35

40

45

50

55

M
ea

n 
A

cr
os

s D
at

as
et

s

1-Shot Error (lower is better)

20

25

30

35

5-Shot Error (lower is better)

15

20

25

30

10-Shot Error (lower is better)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

25-Shot Error (lower is better)

2 3 4

78

80

82

84

86

W
ei

gh
te

d 
M

ea
n 

A
cr

os
s D

at
as

et
s

2 3 4

81

82

83

84

85

2 3 4

81

82

83

84

85

2 3 4

82

83

84

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

H/14

Figure C.3: Extended few-shot results from Figure 5.4 with an additional aggregation method
and numbers of shots.

C.8.5 Extended Results for OOD Detection

Here we extended the OOD results of Figure 5.6. Specifically, we add CIFAR100 as an
in-distribution dataset and Describable Textures Dataset (DTD) (Cimpoi et al., 2014)
as an OOD dataset. We also add the area under the receiver operating characteristic
(AUC (ROC)) and the area under the precision-recall curve (AUC (PR)) as metrics. Fig-
ures C.4 and C.5 contain the results with CIFAR10 and CIFAR100 as the in-distribution
datasets, respectively.



C.8 Additional Experimental Results 189

As in Figure 5.6, we see that e3 performs better (relative to the other baselines) for
larger ViT families. Furthermore, e3 seems to perform better in near OOD detection
(i.e., CIFAR10 versus CIFAR100, and vice versa) than far Out-of-distribution (OOD)
detection. Finally, we see that these trends are consistent across OOD metrics.

C.8.6 Extended Results for ImageNet

In this section, we extend the results for ImageNet and the corrupted variants presented
in Figures 5.4, 5.5 and 5.7. In addition to NLL, classification error, ECE (for standard
ImageNet), and Brier score, Figure C.6 provides classification error and ECE for all
ImageNet variants.

Most of the trends observed in Section 5.5 remain true:

• e3 tends to be Pareto efficient in the presence of a distribution shift.

• For smaller ViT families, V-MoE outperforms ViT in the presence of distribution
shift.

• e3 improves ECE over ViT and V-MoE.

• e3 improves classification performance.

• ViT consistently provides better ECE than V-MoE.

However, there are some exceptions:

• ImageNet-A classification error. All models (including e3) under-perform
relative to ViT-S/32 and ViT-H/14.

• ECE for ImageNet-C, ImageNet-A, and ImageNet-V2. Interestingly, for
the non-standard ImageNet variants, and in particular for ImageNet-A, there is a
strong correlation between lower ECE and larger ViT families.

We also find that the results for classification error and Brier score follow those for
NLL closely.

C.8.7 Additional CIFAR10, CIFAR100, Flowers, and Pets Re-
sults

Here we extend the results for ImageNet and the corrupted variants presented in Fig-
ures 5.4, 5.5 and 5.7 to four additional datasets. Figures C.7, C.8, C.9 and C.10 provide



190 Sparse MoE Details

results for CIFAR10, CIFAR100, Oxford Flowers 102, and Oxford IIIT Pet, respectively.
As in Section C.8.6, we find that the results are similar to those in Section 5.5.

Compared to ImageNet, for CIFAR10, CIFAR10-C, and CIFAR100, e3 seems to
perform even better relative to the other baselines. Note, for example, that e3 is
Pareto efficient (even for S/32) in the cases of CIFAR10-C and CIFAR100 NLL. As
in Section C.8.6, we see that the ECE has a stronger downward trend with respect to
increased ViT family size for shifted test data.

For Flowers and Pets, where we only have results for smaller ViT families, e3 seems
to underperform. However, the performance for L/32 is better than for S/32 and B/32,
which suggests that the results for these datasets are consistent with the other datasets
presented in this work and, therefore, that we should expect e3’s predictive performance
to keep improving with larger models.

C.8.8 Efficient Ensemble of Experts and V-MoE with larger
values of K and M

Figure C.11 and Figure C.12 show the effect of varying K on e3 and V-MoE, and the
effect of varying M on e3, respectively. We make the following observations:

• In almost all cases, increasing K or M does not result in Pareto efficient models.

• For V-MoE, increasing K seems to help in most cases, except for ECE performance,
where it usually hurts.

• For e3, going from K = 1 to K = 2 seems to help in most cases but going from
K = 2 to K = 4 usually hurts. Going from K = 1 to K = 4 still helps, but to a
lesser extent than from K = 1 to K = 2.

• For e3, increasing M either doesn’t make a consistent and significant difference or
hurts (e.g. in OOD detection).

These conclusions should, however, be considered with caution. Recall that the
upstream checkpoints used for fine-tuning all V-MoE and e3 models in this work are
V-MoE models with K = 2. Thus, the results in this experiment are confounded by
upstream and downstream checkpoint mismatch for all e3 models and all V-MoE models
with K ̸= 2. This phenomenon was observed in Riquelme et al. (2021) for V-MoE
models. I.e., performance of downstream V-MoE models with mismatched values of
K was relatively worse than those with matched values of K; see their Appendix E.4
(Figures 33-35). We also hypothesise that it is more difficult to train downstream e3



C.8 Additional Experimental Results 191

models with larger values of M from upstream V-MoE models because in each subset of
the experts some common expert specialisations will need to be duplicated. Our ensemble
members are fine-tuned from an upstream V-MoE with a predefined total number of
experts (E = 32), meaning that increasing M decreases the number of experts available
to each ensemble member (with E/M experts per member). This could also impact the
performance of e3 with larger sizes of M .

Upstream vs. Downstream Mismatch

Table C.8: ImageNet performance of e3 models fine-tuned from V-MoE-B/32 checkpoints
with K = 2 or K = 4, and E = 32. Kupstream = 2 results are averaged over 8 random seeds,
while Kupstream = 4 results are averaged over 3 seeds.

K M Kupstream NLL ↓ Error ↓

e3

1 2 2 0.622 ± 0.001 16.70 ± 0.03

4 0.622 ± 0.001 16.81 ± 0.05

1 4 2 0.624 ± 0.001 16.99 ± 0.03

4 0.622 ± 0.000 16.93 ± 0.01

Here we investigate whether upstream versus downstream mismatch partially explains
the counter-intuitive result that increasing M can result in worse performance for e3. We
train downstream e3 models with (K = 1, M = 2) and (K = 1, M = 4) from upstream
V-MoE checkpoints with K = 2 and K = 4. Table C.8 shows the results. We see that
(K = 1, M = 2) does not seem to benefit from increasing Kupstream from 2 to 4, despite
the fact that the upstream K = 4 model is better than the upstream K = 2 model (NLL
upstream is 8.18 for K = 4 and 8.27 for K = 2). On the other hand, (K = 1, M = 4)
does benefit from having K=4 upstream.

This confirms that the mismatch between upstream and downstream models is one of
the factors explaining the results of e3 for growing M . However, we also see that the
best performing model is (Kupstream = 2, K = 1, M = 2), which suggests that there are
other confounding factors, such as those mentioned above.

C.8.9 Extended Results for the Tiling with Increasing Parameter
Sharing Ablation

In Table C.9, we extend the results for our parameter sharing ablation in Section 5.4.2,
from K = 2 to K = 1. We see that the results remain the same in this case.



192 Sparse MoE Details

Table C.9: Extension of Table 5.3, showing the impact of parameter sharing in e3, for K = 1.

Overlap NLL ↓ Error ↓ ECE ↓ KL ↑
0 (=e3) 0.622 ± 0.001 16.70 ± 0.03 0.018 ± 0.000 0.217 ± 0.003

2 0.627 ± 0.003 16.83 ± 0.07 0.022 ± 0.001 0.194 ± 0.005

4 0.634 ± 0.002 16.92 ± 0.07 0.024 ± 0.001 0.178 ± 0.004

8 0.642 ± 0.001 17.04 ± 0.10 0.028 ± 0.001 0.151 ± 0.009

16 0.659 ± 0.004 17.28 ± 0.12 0.036 ± 0.001 0.103 ± 0.009



C.8 Additional Experimental Results 193

0.05

0.10

0.15

0.20

0.25

C
IF

A
R

10
 v

s. 
C

IF
A

R
10

0

FPR@95 (lower is better)

0.96

0.97

0.98

0.99

AUC (ROC) (higher is better)

0.960

0.965

0.970

0.975

0.980

0.985

0.990

AUC (PR) (higher is better)

0.000

0.005

0.010

0.015

0.020

C
IF

A
R

10
 v

s. 
D

TD

0.992

0.994

0.996

0.998

1.000

0.99850

0.99875

0.99900

0.99925

0.99950

0.99975

1.00000

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
IF

A
R

10
 v

s. 
Pl

ac
es

36
5

0.975

0.980

0.985

0.990

0.995

0.65

0.70

0.75

0.80

0.85

0.90

0.95

2 3

0.00

0.01

0.02

0.03

0.04

C
IF

A
R

10
 v

s. 
SV

H
N

2 3

0.988

0.990

0.992

0.994

0.996

0.998

2 3

0.980

0.985

0.990

0.995

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

Figure C.4: Extended OOD detection the results from Figure 5.6 with an additional OOD
dataset and more metrics.



194 Sparse MoE Details

0.3

0.4

0.5

0.6

C
IF

A
R

10
0 

vs
. C

IF
A

R
10

FPR@95 (lower is better)

0.86

0.88

0.90

0.92

0.94

0.96
AUC (ROC) (higher is better)

0.86

0.88

0.90

0.92

0.94

0.96
AUC (PR) (higher is better)

0.05

0.10

0.15

0.20

0.25

0.30

C
IF

A
R

10
0 

vs
. D

TD

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

0.2

0.3

0.4

0.5

0.6

C
IF

A
R

10
0 

vs
. P

la
ce

s3
65

0.825

0.850

0.875

0.900

0.925

0.950

0.975

0.3

0.4

0.5

0.6

0.7

0.8

2 3

0.30

0.35

0.40

0.45

0.50

C
IF

A
R

10
0 

vs
. S

V
H

N

2 3

0.89

0.90

0.91

0.92

0.93

0.94

0.95

2 3

0.80

0.82

0.84

0.86

0.88

0.90

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

Figure C.5: Extended OOD detection results from Figure 5.6 with CIFAR100 as the in-
distribution dataset, an additional OOD dataset, and more metrics.



C.8 Additional Experimental Results 195

0.4

0.5

0.6

0.7

0.8

0.9

Im
ag

eN
et

NLL (lower is better)

10

12

14

16

18

20

22

24

Error (lower is better)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ECE (lower is better)

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Brier (lower is better)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Im
ag

eN
et

-C
 (a

ve
ra

ge
)

20

25

30

35

40

45

50

0.02

0.03

0.04

0.05

0.06

0.07

0.30

0.35

0.40

0.45

0.50

0.55

0.60

2

3

4

5

6

7

Im
ag

eN
et

-A

50

60

70

80

90

100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 3 4

0.8

1.0

1.2

1.4

1.6

Im
ag

eN
et

-V
2

2 3 4

20

25

30

35

2 3 4

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2 3 4

0.30

0.35

0.40

0.45

0.50

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

H/14

Figure C.6: Extended results from Figures 5.4, 5.5 and 5.7 with additional metrics.



196 Sparse MoE Details

0.02

0.03

0.04

0.05

0.06

0.07

C
IF

A
R

10

NLL (lower is better)

0.5

1.0

1.5

2.0

Error (lower is better)

0.003

0.004

0.005

0.006

0.007

0.008
ECE (lower is better)

0.010

0.015

0.020

0.025

0.030

Brier (lower is better)

2 3

0.2

0.3

0.4

0.5

C
IF

A
R

10
-C

2 3

6

8

10

12

14

16

2 3

0.03

0.04

0.05

0.06

0.07

0.08

2 3

0.10

0.15

0.20

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

Figure C.7: Results for CIFAR10 and CIFAR10-C.

2 3

0.20

0.25

0.30

0.35

0.40

0.45

C
IF

A
R

10
0

NLL (lower is better)

2 3

6

8

10

12

Error (lower is better)

2 3

0.01

0.02

0.03

0.04

ECE (lower is better)

2 3

0.08

0.10

0.12

0.14

0.16

0.18

Brier (lower is better)

downstream log(GFLOPs) (lower is better)

S/32
E3

B/32
V-MoE

L/32
ViT

B/16
1 Member

L/16
2 Members

Figure C.8: Results for CIFAR100.



C.8 Additional Experimental Results 197

1.5 2.0 2.5

0.05

0.10

0.15

0.20

O
xf

or
d 

Fl
ow

er
s

NLL (lower is better)

1.5 2.0 2.5

0

1

2

3

4

5

Error (lower is better)

1.5 2.0 2.5

0.00

0.01

0.02

0.03

0.04

ECE (lower is better)

1.5 2.0 2.5

0.02

0.04

0.06

0.08
Brier (lower is better)

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 1 Member 2 Members

Figure C.9: Results for Oxford Flowers 102.

1.5 2.0 2.5

0.15

0.20

0.25

0.30

O
xf

or
d 

Pe
ts

NLL (lower is better)

1.5 2.0 2.5

4

5

6

7

8

9

Error (lower is better)

1.5 2.0 2.5

0.01

0.02

0.03

0.04

ECE (lower is better)

1.5 2.0 2.5

0.06

0.08

0.10

0.12

0.14
Brier (lower is better)

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 1 Member 2 Members

Figure C.10: Results for Oxford IIIT Pet.



198 Sparse MoE Details

0.5

0.6

0.7

0.8

0.9

Im
ag

eN
et

NLL (lower is better)

14

16

18

20

22

24

Error (lower is better)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ECE (lower is better)

1.25

1.50

1.75

2.00

2.25

Im
ag

eN
et

-C
 (a

ve
ra

ge
)

NLL (lower is better)

30

35

40

45

50

Error (lower is better)

0.02

0.03

0.04

0.05

0.06

0.07

ECE (lower is better)

20

25

30

35

M
ea

n 
A

cr
os

s D
at

as
et

s

5-Shot Error (lower is better)

17.5

20.0

22.5

25.0

27.5

30.0

10-Shot Error (lower is better)

14

16

18

20

22

24

25-Shot Error (lower is better)

1.5 2.0 2.5

0.05

0.10

0.15

0.20

0.25

C
IF

A
R

10
 v

s. 
C

IF
A

R
10

0

FPR@95 (lower is better)

1.5 2.0 2.5

0.96

0.97

0.98

0.99
AUC (ROC) (higher is better)

1.5 2.0 2.5

0.960

0.965

0.970

0.975

0.980

0.985

0.990
AUC (PR) (higher is better)

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 1 Member 2 Members

Figure C.11: Results for V-MoE with K ∈ {1, 2, 4, 8} and e3 with K ∈ {1, 2, 4}. Models with
larger values of K have larger FLOPs.



C.8 Additional Experimental Results 199

0.5

0.6

0.7

0.8

0.9

Im
ag

eN
et

NLL (lower is better)

14

16

18

20

22

24

Error (lower is better)

0.010

0.015

0.020

0.025

0.030

0.035

ECE (lower is better)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Im
ag

eN
et

-C
 (a

ve
ra

ge
)

NLL (lower is better)

30

35

40

45

50

Error (lower is better)

0.02

0.03

0.04

0.05

0.06
ECE (lower is better)

25

30

35

M
ea

n 
A

cr
os

s D
at

as
et

s

5-Shot Error (lower is better)

17.5

20.0

22.5

25.0

27.5

30.0

10-Shot Error (lower is better)

14

16

18

20

22

24

25-Shot Error (lower is better)

1.5 2.0 2.5

0.05

0.10

0.15

0.20

0.25

0.30

C
IF

A
R

10
 v

s. 
C

IF
A

R
10

0

FPR@95 (lower is better)

1.5 2.0 2.5

0.95

0.96

0.97

0.98

0.99

AUC (ROC) (higher is better)

1.5 2.0 2.5

0.96

0.97

0.98

0.99

AUC (PR) (higher is better)

downstream log(GFLOPs) (lower is better)

E3 V-MoE ViT S/32 B/32 L/32 1 Member 2 Members 4 Members

Figure C.12: Results for e3 with M = 4 and K ∈ {1, 2}.



200 Sparse MoE Details

C.8.10 Summary for NLL under Distribution Shift

Table C.10 shows the percentage improvement for e3 versus V-MoE in NLL (i.e.,
NLLV-MoE−NLLe3

NLLV-MoE
× 100, with positive values thus indicating that e3 improves upon V-

MoE) averaged over ImageNet-C, ImageNet-A, and ImageNet-V2, for a given ViT family
and (K, M) in {(1, 2), (2, 2)} (compared to V-MoE with K = 2 and K = 4, respectively).
We see that for all ViT families except S/32, e3 outperforms V-MoE. This result is not
unexpected, since ensembles tend to provide improved performance under distribution
shift relative to single models (Lakshminarayanan et al., 2017; Ovadia et al., 2019; Havasi
et al., 2020).

Table C.10: Percentage improvement for e3 vs V-MoE in NLL under distribution shift,
averaged over ImageNet-C, ImageNet-A, and ImageNet-V2.

S/32 B/32 B/16 L/32 L/16 H/14

e3 (K = 1,M = 2) vs. V-MoE (K = 2) -1.15 0.52 0.31 5.34 2.78 8.33
e3 (K = 2,M = 2) vs. V-MoE (K = 4) -0.21 3.91 1.33 7.37 2.27 —

C.8.11 Preliminary ImageNet Results without Pre-training

Training large-scale sparse MoEs on datasets such as ImageNet and in absence of any
pre-training is a difficult task. Indeed, the massive number of parameters causes models
to severely overfit in that regime. In practice, we need to combine various regularisation
techniques to control this overfitting.

To obtain preliminary results of e3 trained from scratch on ImageNet, we adapt
the recipe proposed in the code released by Riquelme et al. (2021). The recipe is itself
based on the regularisation protocol of Steiner et al. (2022) (“AugReg”), which trained
performant dense ViT models from scratch on ImageNet, without pre-training. Overall,
compared to the default training schema used for this paper, we add:

• Mixup (Zhang et al., 2018),

• Weight decay,

• Dropout (Srivastava et al., 2014) on expert MLPs.

The baseline configuration for V-MoE was tuned according to the hyperparameter search
space defined by Steiner et al. (2022), with an extra sweep over expert MLP dropout
in {0.1, 0.2}. Selecting according to validation accuracy, the optimal V-MoE setting



C.8 Additional Experimental Results 201

Table C.11: ImageNet performance (means ± standard errors over 3 seeds) of V-MoE and e3

for a S/32 backbone, without pre-training.

K NLL ↓ Error ↓
e3 (M = 2) 1 1.420 ± 0.007 23.78 ± 0.22

V-MoE 2 1.478 ± 0.003 24.45 ± 0.08

was medium2, i.e., mixup ratio 0.5 and RandAugment (Cubuk et al., 2020) parameters 2
and 15 (2 augmentations applied of magnitude 15), alongside expert dropout 0.2. For e3,
these regularisation-related hyperparameters were kept fixed and were not further tuned.
More precisely, we keep medium2 and tune only the learning rate in {0.001, 0.003}; we
thus suspect we could improve our current results for e3 by considering a broader sweep
of hyperparameters (e.g., re-tuning all the regularisation-related hyperparameters).

In Table C.11, we report the performance for both V-MoE and e3 with a S/32
backbone. In terms of both NLL and classification error, e3 outperforms V-MoE.
The model checkpoint, along with our code, can be found at https://github.com/
google-research/vmoe.

C.8.12 Upstream & Downstream versus Downstream-only En-
sembles

In Section 5.5, and Section C.8 include downstream deep ensembles (down-DE) of V-MoE,
and in some cases ViT, as a baseline. This choice was motivated by the fact that like ViT,
V-MoE, and e3, down-DE requires only a single upstream checkpoint, which all of the
methods more comparable. However, it is clear that using different upstream checkpoints
and then further fine-tuning each of these with different random seeds to construct an
upstream deep ensemble (up-DE) would result in more varied ensemble members and as
a result, a better performing ensemble. This idea has recently been explored by Mustafa
et al. (2020).

Thus, for completeness, we also investigate the effects of upstream ensembling on
V-MoE. Table C.12 compares the performance of upstream and downstream V-MoE
(K = 1) ensembles of sizes M = 2 and M = 4. Across the range of metrics, for both
ImageNet and ImageNet-C, for all ViT families, and for both values of M , we see that
up-DE outperforms down-DE. In fact, up-DE with M = 2 is very often better than or
equal to down-DE with M = 4. This is especially true for the diversity metrics, which
indicates that diversity is indeed the driver for improved performance in up-DE. Not

https://github.com/google-research/vmoe
https://github.com/google-research/vmoe


202 Sparse MoE Details

shown in the table is the very large computational cost associated with training upstream
ensembles.



C
.8

A
dditionalE

xperim
entalR

esults
203

Table C.12: Comparison of upstream and downstream ensembles of V-MoE with (K = 1).

ImageNet ImageNet-C
M NLL ↓ Error ↓ ECE ↓ KL ↑ Cos. Sim. ↓ Norm. Dis. ↑ NLL ↓ Error ↓ ECE ↓ KL ↑ Cos. Sim. ↓ Norm. Dis. ↑

H/14

down-DE 2 0.403 ± 0.000 11.35 ± 0.05 0.018 ± 0.001 0.079 ± 0.003 0.974 ± 0.001 0.488 ± 0.006 0.871 ± 0.012 21.37 ± 0.20 0.021 ± 0.001 0.218 ± 0.002 0.925 ± 0.001 0.628 ± 0.003

up-DE 2 0.391 ± 0.000 11.12 ± 0.10 0.016 ± 0.001 0.126 ± 0.008 0.963 ± 0.002 0.625 ± 0.012 0.839 ± 0.011 20.66 ± 0.22 0.022 ± 0.000 0.355 ± 0.007 0.892 ± 0.002 0.809 ± 0.006

down-DE 4 0.392 ± 0.000 11.20 ± 0.000 0.014 ± 0.000 0.083 ± 0.000 0.973 ± 0.000 0.509 ± 0.000 0.851 ± 0.000 20.97 ± 0.000 0.021 ± 0.000 0.221 ± 0.000 0.923 ± 0.000 0.650 ± 0.000

up-DE 4 0.375 ± 0.000 10.66 ± 0.000 0.013 ± 0.000 0.129 ± 0.000 0.963 ± 0.000 0.652 ± 0.000 0.792 ± 0.000 19.61 ± 0.000 0.032 ± 0.000 0.361 ± 0.000 0.892 ± 0.000 0.850 ± 0.000

L/16

down-DE 2 0.450 ± 0.002 12.62 ± 0.04 0.016 ± 0.000 0.061 ± 0.001 0.979 ± 0.000 0.419 ± 0.002 1.010 ± 0.006 24.43 ± 0.12 0.021 ± 0.000 0.168 ± 0.002 0.936 ± 0.001 0.539 ± 0.003

up-DE 2 0.434 ± 0.000 12.23 ± 0.04 0.014 ± 0.000 0.118 ± 0.001 0.964 ± 0.000 0.584 ± 0.001 0.961 ± 0.001 23.46 ± 0.03 0.023 ± 0.000 0.342 ± 0.001 0.890 ± 0.000 0.766 ± 0.001

down-DE 4 0.440 ± 0.002 12.39 ± 0.06 0.015 ± 0.000 0.061 ± 0.001 0.979 ± 0.000 0.425 ± 0.002 0.983 ± 0.006 23.95 ± 0.12 0.020 ± 0.000 0.166 ± 0.001 0.937 ± 0.000 0.547 ± 0.002

up-DE 4 0.418 ± 0.000 11.86 ± 0.01 0.013 ± 0.000 0.118 ± 0.000 0.964 ± 0.000 0.603 ± 0.001 0.916 ± 0.001 22.45 ± 0.02 0.034 ± 0.000 0.341 ± 0.000 0.890 ± 0.000 0.800 ± 0.001

L/32

down-DE 2 0.533 ± 0.002 14.55 ± 0.04 0.025 ± 0.001 0.092 ± 0.001 0.969 ± 0.000 0.479 ± 0.004 1.184 ± 0.003 27.98 ± 0.04 0.029 ± 0.000 0.199 ± 0.002 0.925 ± 0.001 0.556 ± 0.002

up-DE 2 0.511 ± 0.001 14.07 ± 0.02 0.019 ± 0.000 0.191 ± 0.001 0.945 ± 0.000 0.694 ± 0.005 1.133 ± 0.002 26.97 ± 0.04 0.022 ± 0.000 0.449 ± 0.005 0.861 ± 0.001 0.820 ± 0.003

down-DE 4 0.518 ± 0.002 14.29 ± 0.03 0.022 ± 0.000 0.092 ± 0.001 0.969 ± 0.000 0.487 ± 0.003 1.154 ± 0.004 27.47 ± 0.05 0.023 ± 0.000 0.199 ± 0.002 0.925 ± 0.001 0.567 ± 0.002

up-DE 4 0.486 ± 0.000 13.52 ± 0.02 0.016 ± 0.000 0.190 ± 0.001 0.946 ± 0.000 0.722 ± 0.001 1.073 ± 0.001 25.74 ± 0.02 0.030 ± 0.000 0.446 ± 0.001 0.862 ± 0.000 0.857 ± 0.000

B/16

down-DE 2 0.519 ± 0.002 14.09 ± 0.02 0.021 ± 0.001 0.048 ± 0.000 0.982 ± 0.000 0.351 ± 0.002 1.316 ± 0.008 30.02 ± 0.18 0.030 ± 0.000 0.132 ± 0.001 0.943 ± 0.000 0.448 ± 0.002

up-DE 2 0.489 ± 0.001 13.40 ± 0.03 0.015 ± 0.000 0.169 ± 0.002 0.951 ± 0.000 0.668 ± 0.004 1.231 ± 0.004 28.41 ± 0.09 0.023 ± 0.000 0.481 ± 0.006 0.845 ± 0.001 0.838 ± 0.003

down-DE 4 0.511 ± 0.002 13.95 ± 0.01 0.019 ± 0.001 0.048 ± 0.000 0.982 ± 0.000 0.354 ± 0.002 1.293 ± 0.008 29.67 ± 0.18 0.026 ± 0.000 0.132 ± 0.001 0.943 ± 0.000 0.453 ± 0.002

up-DE 4 0.468 ± 0.000 12.89 ± 0.03 0.016 ± 0.000 0.168 ± 0.000 0.951 ± 0.000 0.690 ± 0.001 1.166 ± 0.002 27.08 ± 0.05 0.037 ± 0.000 0.479 ± 0.001 0.846 ± 0.000 0.879 ± 0.001

B/32

down-DE 2 0.620 ± 0.001 16.44 ± 0.04 0.023 ± 0.000 0.073 ± 0.001 0.973 ± 0.000 0.414 ± 0.002 1.510 ± 0.005 33.79 ± 0.08 0.032 ± 0.000 0.175 ± 0.001 0.925 ± 0.000 0.498 ± 0.002

up-DE 2 0.588 ± 0.001 15.74 ± 0.05 0.017 ± 0.001 0.214 ± 0.001 0.937 ± 0.000 0.709 ± 0.001 1.430 ± 0.003 32.37 ± 0.05 0.022 ± 0.000 0.537 ± 0.002 0.824 ± 0.001 0.844 ± 0.002

down-DE 4 0.607 ± 0.000 16.17 ± 0.02 0.021 ± 0.001 0.073 ± 0.000 0.973 ± 0.000 0.418 ± 0.005 1.483 ± 0.008 33.36 ± 0.13 0.027 ± 0.000 0.174 ± 0.001 0.926 ± 0.001 0.504 ± 0.002

up-DE 4 0.561 ± 0.001 15.10 ± 0.03 0.020 ± 0.000 0.214 ± 0.001 0.937 ± 0.000 0.739 ± 0.001 1.357 ± 0.002 30.92 ± 0.03 0.036 ± 0.000 0.537 ± 0.001 0.824 ± 0.000 0.884 ± 0.001

S/32

down-DE 2 0.807 ± 0.003 20.90 ± 0.10 0.018 ± 0.001 0.102 ± 0.001 0.962 ± 0.000 0.458 ± 0.003 2.106 ± 0.010 44.52 ± 0.18 0.038 ± 0.001 0.223 ± 0.003 0.900 ± 0.001 0.521 ± 0.002

up-DE 2 0.763 ± 0.001 19.85 ± 0.04 0.016 ± 0.000 0.305 ± 0.002 0.911 ± 0.000 0.773 ± 0.002 2.004 ± 0.004 42.92 ± 0.08 0.025 ± 0.000 0.683 ± 0.003 0.767 ± 0.001 0.856 ± 0.002

down-DE 4 0.795 ± 0.003 20.66 ± 0.13 0.015 ± 0.001 0.102 ± 0.002 0.962 ± 0.001 0.462 ± 0.004 2.076 ± 0.012 44.16 ± 0.21 0.031 ± 0.000 0.222 ± 0.003 0.900 ± 0.001 0.526 ± 0.003

up-DE 4 0.728 ± 0.001 19.06 ± 0.04 0.025 ± 0.000 0.304 ± 0.001 0.911 ± 0.000 0.808 ± 0.002 1.914 ± 0.003 41.38 ± 0.05 0.034 ± 0.000 0.682 ± 0.003 0.767 ± 0.001 0.891 ± 0.002



204 Sparse MoE Details

C.9 FLOPs Numbers

Table C.13 provides the downstream training FLOPs for various e3, V-MoE, and ViT
configurations. These numbers correspond to the x-values of the points in the figures
presented in Sections C.8 and 5.5. Table C.14 provides the percentage difference in
FLOPs between the e3, V-MoE and down-DE models most commonly used in this
work. Note that the percentage differences for H/14 do not follow the trend of the other
sizes, e.g. that the percentage difference between e3 and V-MoE gets smaller for larger
sizes, due to the fact that for H/15 we use a last-5 configuration rather than the last-2
configuration used for the other ViT families. Table C.15 provides the downstream
training FLOPs for the various ablation study models presented in Section 5.4.2.1

Table C.13: Downstream training GFLOPs for the various e3, V-MoE, and ViT baselines
used in this work.

K M S/32 B/32 B/16 L/32 L/16 H/14

e3

1 2 36.69 105.89 452.62 320.92 1356.46 4183.28
1 4 58.03 152.98 — 403.77 — —
2 2 47.98 131.06 552.65 365.42 1533.74 —
2 4 80.66 203.31 — 492.77 — —
4 2 70.61 181.40 — 454.43 — —

ViT
- 1 24.01 77.97 334.48 271.83 1151.71 3033.60
- 2 48.02 155.93 668.95 543.66 2303.43 6067.21
- 4 96.03 311.87 1337.90 1087.33 4606.85 12134.41

V-MoE

1 1 26.02 82.35 351.91 279.55 1182.08 3179.90
1 2 52.04 164.70 703.81 559.10 2364.16 6359.81
1 4 104.07 329.41 1407.63 1118.21 4728.32 12719.61
2 1 31.66 94.93 401.98 301.75 1270.78 3617.94
4 1 42.95 120.11 501.99 346.25 1448.06 —
8 1 65.59 170.44 — 435.26 — —

1Note that the e3 and V-MoE results here are different to those in Table C.13 due to a difference in
implementation. We used a simplified, but less computationally efficient, expert-routing implementation
for all of the ablation studies. As a result, the V-MoE and e3 FLOPs in Table C.13 are lower and cannot
be fairly compared with the ablation models presented here. We thus re-benchmarked e3 and V-MoE to
obtain comparable results.



C.9 FLOPs Numbers 205

Table C.14: Percentage difference in downstream training FLOPs for e3 with (K,M) = (1, 2)
compared with V-MoE with K = 1 and an ensemble of two such V-MoE members.

S/32 B/32 B/16 L/32 L/16 H/14

e3 vs. V-MoE 41.01 28.58 28.62 14.80 14.75 31.55
e3 vs. down-DE -29.49 -35.71 -35.69 -42.60 -42.62 -34.22

Table C.15: Downstream training GFLOPs comparison for the ablation study models in
Section 5.4.2.

K M GFLOPs

V-MoE 2 — 96.895
V-MoE 4 — 123.644
V-MoE 8 — 178.133

e3 1 2 109.781
e3 2 2 138.457
e3 4 2 196.870

Tiling 2 2 138.460

Partitioning 2 — 97.885

Overlap = 2 2 2 138.457
Overlap = 4 2 2 138.458
Overlap = 8 2 2 138.459
Overlap = 6 2 2 138.460

Multi-pred 2 — 96.330
Multi-pred 4 — 122.526
Multi-pred 8 — 175.889



206 Sparse MoE Details

C.10 Additional Algorithm Overview Diagrams

h2

h1

h3

gateK(W1hi)

gateK(W2hi)

MLP2(hi)

MLP1(hi)

MLP3(hi)

MLP5(hi)

MLP4(hi)

MLP6(hi)

Dispatch

(K=2)

ĥ2

ĥ1

ĥ3

Combine

h̄1

h̄2

h̄3

Softmax

Transformer
Block

(n−3)×

Norm MSA + Norm p-MoE +

p-MoE Block

Transformer
Block

p-MoE
Block Classifier

Figure C.13: End-to-end overview of the Partitioning method, from Section 5.4.2, with E=6
experts, partitioned into M=2 groups, with sparsity of K=2, and a “last-2” configuration. Top:
Partitioning contains a sequence of transformer blocks, followed by alternating transformer
and p(artitioned)-MoE blocks. As in ViT, images are split into patches whose embeddings
are processed by each block. Here, we show 1 embedding for each of three images ( , , ).
Bottom left: In a MoE block, we replace the transformer block’s MLP with parallel partitioned
expert MLPs. The effect of the routing weights is not depicted. Bottom right: The classifier
makes predictions from the final representations ( ). Notice that without a tiling mechanism,
there is only a single prediction per input.



C.10 Additional Algorithm Overview Diagrams 207

h2

h1

h3

h3,1

h2,1

h1,1

h1,2h1,2

h2,2h2,2

h3,2h3,2

Tile
gateK(Whi)

MLP1(hi,1)

MLP2(hi,1)

MLP3(hi,1)

MLP4(hi,2)

MLP5(hi,2)

MLP6(hi,2)

Dispatch

(K=2)

ĥ2,1

ĥ1,1

ĥ3,1

ĥ2,2ĥ2,2

ĥ1,2ĥ1,2

ĥ3,2ĥ3,2

Combine

h̄1,1

h̄1,2h̄1,2

h̄2,1

h̄2,2h̄2,2

h̄3,1

h̄3,2h̄3,2

Softmax

Ensemble

(Mean)

Transformer
Block

(n−3)×

Norm MSA + Norm MoE +

MoE Block

Transformer
Block

MoE
Block Classifier

1st MoE
block only

Figure C.14: End-to-end overview of the Tiling method, from Section 5.4.2, with E = 6
experts, a sparsity of K=2, and a “last-2” configuration. Top: Tiling contains a sequence of
transformer blocks, followed by alternating transformer and MoE blocks. As in ViT, images are
split into patches whose embeddings are processed by each block. Here, we show 1 embedding
for each of three images ( , , ). Bottom left: In a MoE block, we replace the transformer
block’s MLP with parallel partitioned expert MLPs. The effect of the routing weights is not
depicted. Embeddings are tiled ( ) in the first p-MoE block only. Bottom right: The classifier
averages predictions from the final tiled representations ( ). Notice that without partitioning,
some patches and their corresponding tiled versions can be routed to the same experts, resulting
in a reduced diversity in predictions.

h2

h1

h3

gateK(Whi) MLP2(hi)

MLP1(hi)

MLP3(hi)

Dispatch

(K=2)
ĥ2

ĥ1

ĥ3

Combine

h̄1,1

h̄1,2h̄1,2

h̄2,1

h̄2,2h̄2,2

h̄3,1

h̄3,2h̄3,2

Softmax

Ensemble

(Mean)

Transformer
Block

(n−3)×

Norm MSA + Norm MoE +

MoE Block

Transformer
Block

MoE
Block Classifier

Except Last
MoE block

Figure C.15: End-to-end overview of the simple Multi-pred MoE, from Section 5.4.2, with
E = 3 experts, sparsity of K = 2, and a “last-2” configuration. Top: The multi-pred MoE
contains a sequence of transformer blocks, followed by alternating transformer and MoE blocks.
As in ViT, images are split into patches whose embeddings are processed by each block. Here,
we show 1 embedding for each of three images ( , , ). Bottom left: In all but the last
MoE block, we recombine the predictions as usual. Bottom right: The classifier averages
predictions from the final representations ( ).





Appendix D

Generative Model of Symmetries
Details

D.1 Connections to MLL Optimization

As we will now show, Algorithm 1 has connections to Marginal Log Likelihood (MLL)
maximisation via Variational Autoencoder (VAE)-like amortised inference. Given the
graphical model in Figure 6.2, we can derive an Evidence Lower BOund (ELBO) for
jointly learning the generative and inference parameters with gradients:

log p (x) = log

∫∫
p (x, η, x̂)dη dx̂ (D.1)

= log

∫∫
p (x |η, x̂)pψ(η | x̂)pθ(x̂)dη dx̂

= log

∫∫
p (x |η, x̂)pψ(η | x̂)pθ(x̂)

qω(η, x̂ |x)
qω(η, x̂ |x)

dη dx̂ (D.2)

= log E
qω(η, x̂ |x)

[
p (x | x̂, η) pψ(η | x̂) pθ(x̂)

qω(η, x̂ |x)

]
(D.3)

≥ E
qω(η, x̂ |x)

[log p (x |η, x̂)]︸ ︷︷ ︸
likelihood

−DKL [qω(η, x̂ |x) || pψ(η | x̂)pθ(x̂)]︸ ︷︷ ︸
KL-divergence

(D.4)

≡ −L (θ, ψ, ω) , (D.5)

where pθ(x̂) is some generative model—e.g., a VAE—for prototypes, with parameters
θ, and qω(η, x̂ |x) = qω(η |x)p (x̂ |x, η). Now, we can show that the gradient of the
likelihood term in the ELBO is approximated by the gradient of our Self-Supervised



210 Generative Model of Symmetries Details

Learning (SSL) loss on Line 1 of Algorithm 1:

∇ω E
qω(η |x)p(x̂ |x,η)

[log p (x | x̂, η)] (D.6)

▷ p (x | x̂, η) = δ (x− Tη(x̂)) = lim
σ2→0
N (x | Tη(x̂),σ2):

≈ ∇ω E
qω(η |x)p(x̂ |x,η)

[
logN

(
x
∣∣ Tη(x̂),σ2

)]
(D.7)

▷ take 1 sample, η ∼ qω(η |x):

≈ ∇ω logN
(
x
∣∣ Tη(x̂),σ2

)
, (D.8)

▷ definition of Gaussian PDF:

= ∇ω − 0.5 ∥x− Tη (x̂)∥22 /σ2 − log
(√

2πσ
)

(D.9)

▷ drop constant term:

= ∇ω − 0.5 mse (x, Tη (x̂)) /σ2. (D.10)

The negative sign is due to the fact that the ELBO is maximised, whereas our SSL loss
is minimised. The gradient of the KL-divergence term w.r.t. ψ is approximated by the
gradient of our MLE loss on Line 8 of Algorithm 1:

∇ψDKL [qω(η, x̂ |x) || pψ(η | x̂)pθ(x̂)] (D.11)

▷ definition of DKL:

= ∇ψ E
qω(η |x)p(x̂ |x,η)

[
log

qω(η |x)p (x̂ |x, η)
pψ(η | x̂)pθ(x̂)

]
(D.12)

▷ drop constant terms and use x̂ = T −1
η (x) :

= ∇ψ E
qω(η |x)

[
− log pψ

(
η
∣∣∣ T −1
η (x)

)]
(D.13)

▷ take 1 sample, ηx ∼ qω(η |x):

≈ ∇ψ − log pψ
(
ηx

∣∣∣ T −1
ηx (x)

)
. (D.14)

Note that the sampling approximations in both (D.8) and (D.14) also apply to VAE-like
amortised inference algorithms.

While ELBO training and our algorithm share some similarities, some key differences
exist. For instance, we do not learn the generative and inference models jointly. This dis-
joint training is equivalent to ignoring the gradient ∇ωDKL [qω(η, x̂ |x) || pψ(η | x̂)pθ(x̂)]
when training qω(η |x). This KL-divergence has two components: entropy −H [qω] and



D.1 Connections to MLL Optimization 211

Figure D.1: Failure of an invariant VAE encoder. Top: MNIST digits sampled from the test
set. Mid: Prototypes produced by VAE who’s encoder is made invariant using (D.15), where
η ∼ U (−ηmax,ηmax) and ηmax = (0.25, 0.25, π, 0.25, 0.25). Bot: Reconstructed digits. The
model becomes stuck in a local optima where the prototypes and ‘reconstructions’ are all circles
and rings of various sizes, depending on the input image. The averaged latent code is free of
(e.g.,) rotation information but has also lost almost all information that identifies each digit.

cross entropy H [qω, pψpθ]. Assuming that pψ(η | x̂) is sufficiently flexible, the cross
entropy term should not have a significant impact on qω(η |x) since pψ is trained to
match qω. On the other hand, qω(η |x) should be close to a delta since there should
be a single prototype for each x. Thus, encouraging high variance with an entropy
term might actually be harmful. Another difference is that we do not need to learn
pθ(x̂), which has the benefit that we can learn the symmetries in a dataset without
having to learn to generate the data itself, greatly simplifying training for complicated
datasets. Furthermore, actually evaluating the gradient of the likelihood term in (D.5) is
challenging due to the fact that p (x | x̂, η) is a delta.

Given all of these differences, it might be natural to question the utility of the
comparison between our algorithm and maximisation of (D.5). Perhaps the most useful
connection to draw is that of (D.11) to (D.14), which motivates our MLE learning
objective for pω(η | x̂) as being closely related to the process of learning a prior in an
ELBO.

In an early version of this work (Allingham et al., 2022a), we trained a variant of
our Symmetry-aware Generative Model (SGM) using an ELBO similar to the one above,
with the main difference being that x̂ was modelled using a VAE and invariance was
incorporated into the VAE encoder. We constructed an invariant encoder qϕ(z |x) from
a non-invariant encoder q̂ϕ(z |x):

qϕ(z |x) ≡ Eη [q̂ϕ(z |x)] , (D.15)

following Benton et al. (2020); van der Ouderaa and van der Wilk (2022); Immer et al.
(2022). We found that this approach worked well under a single transformation (e.g.,
rotation) but that it quickly broke down as the space of transformations was expanded
(e.g., to all affine transformations; see Figure D.1). We hypothesise that the averaging
of many latent codes makes it difficult to learn an invariant representation z without



212 Generative Model of Symmetries Details

throwing away all of the information in x. This further motivates our SSL algorithm
for learning invariant prototypes. A similar observation was also made by Dubois et al.
(2021), who found that an SSL-based objective was superior to an ELBO-based method
for learning invariant representations in the context of compression.

D.2 Further Practical Considerations

In this section, we elaborate on Section 6.3.1 and provide additional considerations.

Learning qω(η|x) instead of fω. We found that learning fω probabilistically—i.e.,
allowing for some uncertainty in the transformation during the training process by
parameterising a density function over H with qω(η|x) and sampling η—provides small
improvements in performance. The distribution qω(η|x) quickly collapses to a delta,
thus, we hypothesise that the added noise from sampling acts as a regulariser that is
helpful at the start of training.

Inference network blurring schedule. Occasionally, depending on the dataset,
random seed, kind of transformations being applied, and other hyperparameters, training
the inference network fails, and the prototype transformations would be 100% lossy—
i.e., they would result in completely empty images—regardless of the strength of the
invertibility loss. We found that we could prevent this from happening by adding a small
amount of Gaussian blur to each example. Furthermore, we found that we only needed
to add this blur for a small fraction of the initial training steps to prevent the model
from falling into this degenerate local optima.

Averaging multiple samples for the SSL loss. Just as we found averaging the
MLE loss over multiple samples to improve performance, so too is averaging the SSL loss.

We compare rotation inference nets—with hidden layers of dimensions
[2048, 1024, 512, 256, 128] trained for 2k steps using the AdamW optimizer with a cosine
decayed with warmup learning rate schedule that starts at 1× 10−4, increases to 3× 10−4

in 500 steps, and then decreases to 1× 10−7, with a batch size of 256—trained on fully
rotated MNIST digits using the SSL objective averaged over 1, 3, 5, 10, and 30 samples:



D.2 Further Practical Considerations 213

Samples x-mse

1 0.0981
3 0.0901
5 0.0840
10 0.0853
30 0.0870

As the number of samples increases, x-mse decreases until saturating around 5 samples.
Note that this relationship is not likely to be monotonically decreasing because there
is random noise in each training run (i.e., due to random NN initialisation, etc.). That
said, we expect it will decrease on average as the number of samples increases. We find 5
samples to be a good trade-off between improved performance and increased compute.

Symmetric SSL loss. In our SSL loss, based on Figure 6.4, we are essentially comparing
the prototypes given x and xrnd (a randomly transformed version of x). An alternative
is to compare the prototypes given xrnd1 and xrnd2, two randomly transformed versions
of x: ∥∥∥T −1

fω(xrnd1)
(xrnd1)− T −1

fω(xrnd2)
(xrnd2)

∥∥∥2
2
, xrnd1 = Tηrnd1(x), (D.16)

where xrnd2 = Tηrnd2(x), ηrnd1,ηrnd2 ∼ p(ηrnd). As before, we modify this loss to allow
us to compose transformations to get∥∥∥Tfω(xrnd2) ◦ T −1

fω(xrnd)
(xrnd)− xrnd2

∥∥∥2
2
. (D.17)

The motivation for using this ‘symmetric’ SSL loss is that it provides the inference
network with additional data augmentation—the inference network is now unlikely to
ever see the x twice. We find that while this works well for MNIST, it does not work
well for dSprites. This is because the transformations in dSprites in dSprites are more
lossy than those for MNIST. E.g., it is easier to shift a small sprite out of the frame of
an image compared to a large digit. Thus, the symmetric loss results in a much higher
variance when used with dSprites, which negatively impacts training.

Composing affine transformations of images. Care must be taken when composing
affine transformations of images when implemented via a coordinate transformation (e.g.,
affine_grid & affine_sample in PyTorch, or scipy.map_coords in Jax). To compose
two affine transformations parameterised by η1 and η2, the affine matrices T (η1), T (η2)



214 Generative Model of Symmetries Details

need to be right-multiplied with one another; in other words Tη2 ◦ Tη1 = T ′
T (η1)T (η2)

.
This is because, in these implementations of affine transformation of images, the affine
transformation is applied to the pixel grid (i.e., the reference frame), rather than to the
image itself. In effect, the resulting transformation as applied to the objects in the image
is the opposite; if the reference frame moves to the right, the objects in the image move
to the left, etc. More concretely, when the reference frame is affine-transformed by T ,
the image itself is affine-transformed by T −1.

Overfitting of the generative network. While we did not observe any overfitting
of the inference network (likely due to the built-in ‘data augmentation’ of our SSL
loss, and the general difficulty of learning a function with equivariance to arbitrary
transformations), we did find that the generative network is prone to overfitting. We
address this by using a validation set to optimise several relevant hyperparameters (e.g.,
dropout rates, number of flow layers, number of training epochs, etc.); see Section D.3.

Learning pψ(η | x̂) with imperfect inference, continued. To encourage pψ(η | x̂)
produce the same distribution for the inconsistent prototypes produced by qω(η |x), we
add a consistency loss to Line 8 of Algorithm 1 the MLE objective:

Lconsistency(ψ) =
1

N2

N∑
i=1

N∑
j=1

| log pi − log pj|, (D.18)

where pi = pψ (ηx | x̂′
i) and x̂′

i is due to the ith ηrnd sample.

D.3 Experimental Setup

We use jax with flax for NNs, distrax for probability distributions, and optax for
optimisers. We use ciclo with clu to manage our training loops, ml_collections to
specify our configurations, and wandb to track our experiments. The code is available at
https://github.com/cambridge-mlg/sgm.

Unless otherwise specified, we use the following NN architectures and other hyperpa-
rameters for all of our experiments. We use the AdamW optimiser with weight decay of
1×10−4, global norm gradient clipping, and a linear warm-up followed by a cosine decay
as a learning rate schedule. The exact learning rates and schedules are discussed for each
model below. We use a batch size of 512.

All of our Multi-Layer Perceptrons (MLPs) use gelu activations, and LayerNorm.
In some cases, we use Dropout. The structure of each layer is Dense → gelu →

https://github.com/cambridge-mlg/sgm


D.3 Experimental Setup 215

LayerNorm → Dropout. Whenever we learn or predict a scale parameter σ, it is con-
strained to be positive using a softplus operation.

Inference network. We use a MLP with hidden layers of dimension [2048, 1024, 512, 256].
The network outputs a mean η prediction for each example, and the uncertainty—as
mentioned in Section D.2—is implemented as a homoscedastic scale parameter. We train
for 60k steps. For each example, we average the loss over 5 random augmentations. In
some settings—also mentioned in Section D.2—we add a small amount of blur to the
images with a Gaussian filter of size 5, for the first 1% of training steps. The σ value for
the filter was linearly decayed from its maximum to 0. The initial maximum value is
specified below.

Generative network. Our generative model is a Neural Spline Flow (NSF) (Durkan
et al., 2019) with 6 bins in the range [−3, 3]. We use a MLP with hidden layers of
dimension [1024, 512, 512] as a shared feature extractor. The base normal distribution’s
mean and scale parameters are predicted by another MLP, with hidden layers of dimension
[256, 256], whose input is the shared feature representation. The parameters of the spline
at each layer of the Normalising Flow (NF) are predicted by MLPs with a single hidden
layer of dimension 256, with a dropout rate of 0.1, whose input is a concatenation of the
shared feature representation, and the (masked) outputs of the previous layer. For each
example, we average the loss over 5 random augmentations.

D.3.1 MNIST under affine transformations

We split the MNIST training set by removing the last 10k examples and using them
exclusively for validation and hyperparameter sweeps. We randomly augment the
inputs by sampling transformation parameters from U (−ηmax, ηmax), where ηmax =

(0.25, 0.25, π, 0.25, 0.25) is the maximum (x-shift, y-shift, rotation, x-scale, y-scale) applied
to the images. All affine transformations are applied with bicubic interpolation.

Inference network. The invertibility loss Linvertibility (6.7) is multiplied by a factor
of 0.1. For the VAE data-efficiency results in Figure 6.11, we performed the following
hyperparameter grid search for each random seed and amount of training data:

• blur σinit ∈ [0, 3],

• gradient clipping norm ∈ [3, 10],



216 Generative Model of Symmetries Details

• learning rate ∈ [1×10−3, 3×10−4, 1×10−4],

• initial learning rate multiplier ∈ [3×10−2, 1×10−2],

• final learning rate multiplier ∈ [1×10−3, 3×10−4, ], and

• warm-up steps % ∈ [0.05, 0.1, 0.2].

All of the other MNIST affine transformation results use a blur σinit of 0, a gradient
clipping norm of 10, a learning rate of 3×10−4, an initial learning rate multiplier of
1×10−2, a final learning rate multiplier of 1×10−3, and a warm-up steps % of 0.2, which
are the best hyperparameters for 50k training examples with an arbitrarily chosen random
seed. We use the ‘symmetric’ SSL loss discussed in Section D.2.

Generative network. We use an initial learning rate multiplier of 0.1, a gradient
clipping norm of 2, and a warm-up steps % of 0.2. For the VAE data-efficiency results in
Figure 6.11, we performed the following hyperparameter grid search for each random
seed and amount of training data:

• learning rate ∈ [3×10−3, 3×10−4],

• final learning rate multiplier ∈ [0.3, 0.03],

• number of training steps ∈ [7.5k, 15k, 30k, 60k],

• number of flow layers ∈ [4, 5, 6],

• shared feature extractor dropout rate ∈ [0.05, 0.1, 0.2], and

• consistency loss multiplier ∈ [0, 1] (whether or not to use (D.18)).

When sweeping over the generative network hyperparameters, we require a trained
inference network. We use the inference network hyperparameters for the same (random
seed, number of training examples) pair. All of the other MNIST affine transformation
results use a learning rate of 3×10−3, a final learning rate multiplier of 0.03, 60k training
steps, 6 flow layers, and a dropout rate of 0.2 in the shared feature extractor, which are
the best hyperparameters for 50k training examples.



D.3 Experimental Setup 217

D.3.2 MNIST under colour transformations

For colour transformation on the MNIST dataset, we follow the same setup as above,
with the following exceptions. We do not use an invertibility loss when training the
inference network. Instead, for both the inference and generative networks, we constrain
the outputs to be in [−ηmax, ηmax], where ηmax = (0.5, 2.301, 0.51) using with tanh and
scale bijectors.

Inference network. We use a blur σinit of 3, a gradient clipping norm of 2, a learning
rate of 3×10−4, an initial learning rate multiplier of 1×10−2, a final learning rate multiplier
of 1×10−4, and a warm-up steps % of 0.1, which were chosen using the same grid sweep
as MNIST with affine transformations.

Generative network. We use a learning rate of 3×10−3, with an initial learning rate
multiplier of 1×10−1, a final learning rate multiplier of 3×10−2, 15k training steps, 6 flow
layers, and a dropout rate of 0.2 in the shared feature extractor.

D.3.3 dSprites under affine transformations

For our dSprites experiments, we follow the same setup as for MNIST above, with the
following exceptions. We do not use an invertibility loss when training the inference
network. Instead, for both the inference and generative networks, we constrain their
outputs to be in [−ηmax, ηmax], where ηmax = (0.75, 0.75, π, 0.75, 0.75) using with tanh

and scale bijectors. We do not use the ‘symmetric’ SSL loss discussed in Section D.2.

Inference network. We randomly augment the inputs by sampling transformation
parameters from U (−ηmax, −ηmax), where ηmax matches the constraints above. We use a
blur σinit of 3, a gradient clipping norm of 3, a learning rate of 1×10−3, an initial learning
rate multiplier of 3×10−2, a final learning rate multiplier of 1×10−3, and a warm-up
steps % of 0.05, which were chosen using the same grid sweep as MNIST with affine
transformations.

Generative network. We randomly augment the inputs by sampling transformation
parameters from U (−ηmax × 0.75, −ηmax × 0.75), where ηmax matches the constraints
above. We use a learning rate of 3×10−4, a final learning rate multiplier of 0.3, 60k
training steps, 6 flow layers, and a dropout rate of 0.05 in the shared feature extractor,
which were chosen using the same grid sweep as MNIST with affine transformations.



218 Generative Model of Symmetries Details

Although we swept over the consistency loss multiplier, we accidentally always used a
consistency loss multiplier of 1 in our experiments. This means that for some (random
seed, amount of training data) pairs, the performance of our generative network is
slightly lower than it should be, since the chosen hyperparameters may correspond to a
consistency loss multiplier of 0. We include this detail for reproducibility, but note that
it does not change our findings in any material way.

dSprites Setup

0

1000

2000

sq
u

a
re

Scale

0

100

200

Orientation

0

200

400

600

X position

0

200

400

600

Y position

0

1000

2000

3000

el
li

p
se

0

500

1000

0

200

400

600

0

500

1000

0.6 0.8 1.0

0

2000

4000

h
ea

rt

0 2 4 6

0

5000

10000

0.0 0.5 1.0

0

250

500

750

0.0 0.5 1.0

0

250

500

750

Figure D.2: Latent factor distributions for our modified dSprites data loader.

The original dSprites dataset contains sprites with the following factors of variation
(Matthey et al., 2017).

• Colour: white

• Shape: square, ellipse, heart

• Scale: 6 values linearly spaced in [0.5, 1]

• Orientation: 40 values linearly spaced in [0, 2π]

• X position: 32 values linearly spaced in [0, 1]

• Y position: 32 values linearly spaced in [0, 1]



D.3 Experimental Setup 219

The dataset consists of sprites with the outer product of these factors, for a total of
737280 examples. We modified our data loader to resample the sprites proportional to
the following distributions on the latent latent factors, conditioned on the shape.

• square

– Scale: TruncNorm (µ = 0.75, σ2 = 0.2, min = 0.55, max = 1.0)

– Orientation: U (0.0, 2π)
– X position: U (0.5, 0.95)
– Y position: U (0.5, 0.95)

• ellipse

– Scale: TruncNorm (0.65, 0.15, 0.5, 0.85)

– Orientation: U (0.0, π/2)
– X position: TruncNorm (0.5, 0.25, 0.1, 0.9)

– Y position: TruncNorm (0.5, 0.15, 0.35, 0.65)

• heart

– Scale: U (0.9, 1.0)
– Orientation: δ (0.0)

– X position: U (0.1, 0.5)
– Y position: 0.5 · U (0.1, 0.3) + 0.5 · U (0.7, 0.9)

An example of the resulting empirical distributions over the latent factors is shown in
Figure D.2. The three shapes are sampled with equal proportions.

D.3.4 GalaxyMNIST under affine and colour transformations

For our GalaxyMNIST experiments, we follow the same setup as for MNIST under affine
transformations above, with the following exceptions. We do not use an invertibility
loss when training the inference network. Instead, for both the inference and generative
networks, we constrain their outputs to be in [−ηmax, ηmax] + (0., 0., 0., 0., 0., 0.5, 0., 0.),
where ηmax = (0.75, 0.75, π, 0.75, 0.75, 0.5, 2.31, 0.51) using with tanh and scale bijectors.
This dataset contains 10k examples. We use the last 2k as our test set, and the previous
1k as a validation set.



220 Generative Model of Symmetries Details

Inference network. We use an MLP with hidden layers of dimension [1024, 1024, 512, 256].
We train for 10k steps. We randomly augment the inputs by sampling transformation
parameters from U (−ηmax + (0., 0., 0., 0., 0., 0.5, 0., 0.), ηmax + (0., 0., 0., 0., 0., 0.5, 0., 0.)),
where ηmax matches the constraints above. For the VAE data-efficiency results in Fig-
ure 6.12, we performed the same hyperparameter grid search as above for each random
seed and amount of training data. All of the other GalaxyMNIST results use a blur σinit

of 0, a gradient clipping norm of 10, a learning rate of 3×10−4, an initial learning rate
multiplier of 1×10−2, a final learning rate multiplier of 3×10−4, and a warm-up steps %
of 0.2, which are the best hyperparameters for 7k training examples with an arbitrarily
chosen random seed. We use the ‘symmetric’ SLL loss discussed in Section D.2.

Generative network. We randomly augment the inputs by sampling transformation
parameters from U (−ηmax × 0.75 + (0., 0., 0., 0., 0., 0.5, 0., 0.), ηmax × 0.75 + (0., 0., 0., 0., 0., 0.5, 0., 0.)),
where ηmax matches the constraints above. For the VAE data-efficiency results in Fig-
ure 6.12, we perform the same hyperparameter grid search as above for each random
seed and amount of training data, with the following changes.1 The sweep for number of
training steps is [3.75k, 7.5k, 15k]. All of the other GalaxyMNIST results use a learning
rate of 3×10−4, a final learning rate multiplier of 0.03, 15k training steps, 4 flow layers, a
dropout rate of 0.05 in the shared feature extractor, and a consistency loss multiplier of
1, which were chosen using the same grid sweep for an arbitrary random seed and 7k
training examples.

D.3.5 PatchCamelyon under affine and colour transformations

We resized the images from 96 × 96 pixels to 64 × 64 using bilinear interpolation.
The dataset has dedicated train, test, and validation splits, which we use without any
modifications.

We follow the same setup as for GalaxyMNIST under affine and colour transformations
above, with the exceptions listed below. We only used a single random seed.

Inference network. We train for 20k steps.

Generative network. The sweep for number of training steps is [15k, 30k, 60k].2

1Our GalaxyMNIST results have the same issue as our dSprites results—the sweep included a
consistency loss multiplier which was always set to a value of 1 in our experiments. This results in some
small performance degradations.

2Our PatchCamelyon results have the same consistency multiplier issue as our dSprites and GalaxyM-
NIST results.



D.3 Experimental Setup 221

D.3.6 VAE, AugVAE, and InvVAE

Our VAEs use a latent code size of 20. The prior is a normal distribution with learnable
mean and scale, initialised to 0s and 1s, respectively.

Our VAE encoders are LeNet-style CNNs with convolutional feature extractors
followed by a MLP with a single hidden layer of size 256. The convolutional feature
extractors use gelu activations and LayerNorm. The structure is Conv → gelu →
LayerNorm. All Conv layers use 3×3 filters. The first two Conv have a stride of 2, while
all others have a stride of 1. In between the convolutional layers and the MLP, there is
a special dimensionality reduction Conv with only 3 filters followed by a flatten. For
each dimension of the latent code, the encoder predicts a mean µ and a scale σ. The
means and scales are initialised to 0s and 1s, respectively.

Our VAE decoders are inverted versions of our encoders. That is, we reverse the order
of all of the Dense and Conv layers. The dimensionality reduction Conv layer and the
flatten operation are replaced with the appropriate Dense layer and reshape operation.
We replace all other Conv layers with ConvTransposed layers For each pixel of an image,
the decoder predicts a mean µ. We learn a homoscedastic per-pixel scale σ. The scales
are initialised to 1.

We use an initial learning rate multiplier of 3×10−2, and a final learning rate multiplier
of 1×10−4. We run the following grid sweep for each (random seed, number of training
examples, maximum added rotation angle) triplet:

• learning rate ∈ [3×10−3, 6×10−3, 9×10−3],

• convolutional filters ∈ [(64, 128), (64, 128, 256)],

• number of training steps ∈ [5k, 10k, 20k], and

• warm-up steps % ∈ [0.15, 0.2].

When running the sweep for AugVAE and InvVAE we use the inference and generative
network hyperparameters for the same (random seed, number of training examples) pair.

PatchCamelyon

For our PatchCamelyon experiments, we use only a single random seed and a slightly
modified hyperparameter sweep:

• learning rate ∈ [3×10−3, 6×10−3,

• convolutional filters ∈ [(64, 128), (64, 128, 256), (128, 256, 512)],



222 Generative Model of Symmetries Details

• number of dense hidden layers ∈ [1, 2],

• number of training steps ∈ [20k, 30k, 40k], and

• warm-up steps % ∈ [0.15].

D.3.7 Parametrisations of Symmetry transformations

We consider 5 affine transformations: shift in x, shift in y, rotation, scaling in x, and
scaling in y. We represent these transformations using affine transformation matrices
A = exp (

∑
i ηiGi), whereGi are generator matrices for rotation, translation, and scaling;

see Benton et al. (2020). The transformations are applied to an image by transforming
the coordinates (x, y) of each pixel, as in Jaderberg et al. (2015):

[
x′ y′ 1

]⊺
=

A ·
[
x y 1

]⊺
.

To parameterise colour transformations, we use an equivalent representation of colour
images in Hue Saturation Value (HSV) space, where each pixel is represented as a tuple
(h, s, v) ∈ {[−π, π]× [0, 1]× [0, 1]}. Intuitively, HSV space represents the colour of each
pixel in a conical space where the hue corresponds to the rotation angle around the cone’s
vertical axis, the saturation corresponds to the radial distance from the cone’s centre,
and the value corresponds to the distance along the cone’s vertical axis, with a value of 0
corresponding to the tip of the cone, and a value of 1 corresponding to the base of the
cone. We colour transform an image by transforming each pixel ash′

s′

v′

 =

 (h+ 2πηh) mod 2π

max(0,min(s exp(ηs), 1))

max(0,min(v exp(ηv), 1))

 . (D.19)

We therefore obtain η = (ηh, ηs, ηv) ∈ {[0, 1]× R× R}. We choose this specific form of
parametrising the η parameters in order to gain the convenience of simply adding and
subtracting in η space when carrying out colour transform compositions and inverses.
More concretely, with our chosen parametrisation, we obtain the property that Tη1 ◦Tη2 =
Tη1+η2 . Therefore, for colour transformations, we can easily perform compositions and
inversions in η space without resorting to matrix multiplications. In order to achieve this,
we first consider hue, which is easy to parametrise in an additive fashion using a modulo
operation due to the fact that hue is represented as a rotation angle in HSV space. On
the other hand, saturation and value are discontinuous parameters that vary between 0
and 1, and cannot be directly modelled in an additive fashion, as they can’t take values
outside their range. Instead, we model them as multiplicative factors in R+, where we



D.4 Comparisons to LieGAN 223

Figure D.3: Learnt augmentation distribution for the MNIST dataset rotated in
the range [−45◦, 45◦] for our SGMs model, and the LieGANs method. The columns
correspond to distributions for translation in x, translation in y, rotation, scaling in
x, and scaling in y. (Row 1-5) Our SGMs learns accurate ranges of rotational invariance
present in the training dataset of a width of π/2 for most training examples, along with learning
the natural invariances present in the training data for translations and scaling. Furthermore,
for certain digits (i.e. 0), the SGMs model accurately predicts a uniform distribution from
[−π, π], signifying that rotationally invariant digits such as a 0 would not display a more
narrow rotational invariance. (Row 6) On the other hand, the LieGANs model learns a single
Lie matrix across the entire training dataset that encodes the maximum possible range of
transformations, and predicts a uniform distribution between those ranges. It can be seen that
LieGANs inaccurately predicts a large range for translations in x, and does not recover the
correct range of rotational invariances present in the training dataset.

first exponentiate ηs and ηv to ensure the multiplicative factors are positive. We further
clip the obtained values to ensure them in the range [0, 1]. This parametrisation allows
us to effectively add parameters to compose them, as the multiplicative factors compose
in exponent space.

In order to ensure that we can easily backpropagate through the clipping operation,
we define a passthrough_clip function in Jax, where we define a custom gradient that
doesn’t zero out gradients even if the inputs to the function are out of bounds. We find
that using the passthrough_clip operation is essential to training the model.

D.4 Comparisons to LieGAN

In this section, we compare the ability of our method to learn symmetries to LieGANs
(Yang et al., 2023), which uses a generator-discriminator framework to automatically
discover equivariances from a dataset using generative adversarial training. Similar



224 Generative Model of Symmetries Details

to (Yang et al., 2023), we transform the MNIST dataset to have rotations in the
range [−45◦, 45◦], which ensures the dataset contains SE(2) symmetry (rotations and
translations). The dataset is processed and our method is trained as described in
Section 6.4.1. For LieGANs, following the experimental design of (Yang et al., 2023),
we set the number of generator channels to c = 1, and consider learnable 6-dimensional
Lie matrices in the generator model. The discriminator model consists of a pre-trained
LeNet5 feature extractor as the backbone, and the validator is a 3-layer MLP with 512
hidden units and ReLU activations. We train the GANs for 100 epochs with a batch size
of 64, and obtain the following Lie matrix

L =

 0.02 −0.34 0.28

0.33 0.08 −0.05
0 0 0

 .

In Figure D.3, we can see that LieGANs struggles to correctly recover the range of
invariances present in the training dataset, especially for translations in x. It is also
unable to provide a fine-grained representation of invariances depending on specific
examples or types of digits. We note that we re-implemented the rotated MNIST
experiment from Yang et al. (2023), as the code for the image domain experiments
was not open-source. Hence, the choice of using a pre-trained LeNet5 model for the
discriminator and the specific hyperparameter configurations were informed decisions
made by us based on ablations. However, our results appear to be in line with those
presented by Yang et al. (2023); concretely, we note that the results presented in their
paper also display a mismatch between the invariances present in the dataset and those
learned by LieGANs. For example, in their Figure 11, we see that the sampled digits are
often rotated by significantly more than 45◦. Furthermore, we see evidence of typical
GANs mode collapse, with many very similar rotations for each digit.

D.5 PatchCamelyon — Boundary Effects

In this section, we provide a “negative” result for our SGMs when applied to the
PatchCamelyon dataset (Veeling et al., 2018). The examples in this dataset, unlike those
used in Section 6.4, contain “content” up to the boundaries of the images.

Figure D.4 shows examples of the prototypes and learned distributions for this dataset,
with affine and colour transformations. We allowed the model to learn any rotations
within ±180◦, while the actual dataset has a rotational invariance of ±n× 90◦. We see
that in some cases the prototypes are rotated by close to ±n× 45◦ relative to the original



D.6 Additional Results 225

(a) Top: samples from the test set. Mid: prototypes for each test example. Bot: resampled versions of
each test example given the prototype.

- 1
2

0 1
2

- 1
2

0 1
2

-π 0 π - 1
2

0 1
2

- 1
2

0 1
2

1
4

1
2

-1 0 1 - 1
4

0 1
4

(b) From left to right, test examples, their prototypes, and the corresponding marginal distributions
over translation in x, translation in y, rotation, scaling in x, scaling in y, hue, saturation, and value.

Figure D.4: Prototypes and learned distributions for PatchCamelyon.

images. In other cases, the rotation of the prototypes relative to the original images is
closer to ±n× 90◦. In the latter case, the learned distribution over rotation is close to
the true distribution, but in the former case, the model learns a distribution that is closer
to uniform. As a result, the resampled digits often display boundary effects that are not
present in the original dataset. Otherwise, our SGM has learned reasonable distributions
for translation, scaling, and HSV transformations.

Figure D.5 compares a standard VAEs with AugVAEs, an SGMs-VAEs hybrid model.
We see that for small amounts of data, the VAEs and AugVAEs perform similarly.
However, as the amount of training data increases, the VAEs performs better. This
is likely because the SGM has not learned the true distribution over rotations. This
“negative” result highlights the importance of correctly choosing the prior transformation
distributions in certain settings. In this case, the performance of the SGMs would have
been improved by choosing a categorical distribution over rotations.

D.6 Additional Results

In this section, we provide additional plots to supplement those in Section 6.4.
Figure D.6 expands on Figure 6.8b in two ways. Firstly, it makes it clear that our

inference network is able to provide the same or very similar prototype for observations



226 Generative Model of Symmetries Details

in the same orbit. Secondly, it provides provides many more resampled examples of each
digit, further demonstrating that our SGM has correctly captured the symmetries present
in the dataset. Figure D.7 expands on Figure 6.8c in the same way.

16384 65536 262144

Num. Train

−3000

−2000

−1000

0

IW
LB

VAE
AugVAE

Figure D.5: VAE data-
efficiency for PatchCamelyon.

Figure D.8 provides the learnt marginal distributions
for the digits in Figure D.7. Here we manually controlled
the distributions over hue and saturation when loading
the dataset, so we know that the range of the hue distri-
bution should be approximately π, while the range of the
saturation distribution should be around 0.3. We see that
this is indeed the case. We did not control the value of the
images, so it is more difficult to interpret those. However,
given that most (non-black) pixels are bright (i.e., close
to 1), it makes sense that our SGM learns multiplicative
values closer to 1.

Finally, Figure D.9 extends our dSprites results in two ways. Firstly, it provides
many more resampled sprites, which also serve to further demonstrate that our SGM has
captured the symmetries correctly. Secondly, the figure includes empirical distributions of
positions of each of the classes of digits, which we have carefully controlled as described in
Section D.3.3. These empirical distributions for the dataset are compared with empirical
distributions for our resampled sprites. We see that although the resampled densities
don’t match the original densities perfectly, their general shapes and ranges are correct.



D.6 Additional Results 227

Figure D.6: Columns from left to right: only rotation, only translations, translation + rotation
+ scaling. Each of the blocks in this figure follows the same format. Top: 7 examples from the
same orbit. Mid: The corresponding prototypes. Bot: Resampled versions of the digits, given
the prototypes.



228 Generative Model of Symmetries Details

Figure D.7: Columns from left to right: only hue, only saturation, only value. Each of the
blocks in this figure follows the same format. Top: 7 examples from the same orbit. Mid: The
corresponding prototypes. Bot: Resampled versions of the digits, given the prototypes.



D.6 Additional Results 229

0 0.5 1

0 π

h
0.6 0.8 1

sprototype × exp(η)
0.5 0.7 1

vprototype × exp(η)

Figure D.8: From left to right, test examples from MNIST with added hue in the range 0 to
0.6π, and saturation scaled by a factor in 0.6 to 0.9, their prototypes, and the corresponding
marginal distributions over hue, saturation, and value.



230 Generative Model of Symmetries Details

Figure D.9: From left to right, samples from dSprites, the empirical distribution over the
positions of the sprites, sprites resampled using our SGM, and the empirical distributions over
the resampled sprites’ positions. We see that the resampled sprites are visually very similar
to the original sprites in terms of sizes, rotations, and positions. Furthermore, we see that the
empirical distributions match in terms of ranges, although they are imperfect in densities.


	Table of contents
	List of figures
	List of tables
	List of terms
	List of symbols
	1 Introduction
	1.1 Thesis Outline and Contributions

	2 Background
	2.1 Uncertainty Estimation in Deep Learning
	2.1.1 Ensembles
	2.1.2 Bayesian Neural Networks
	2.1.3 Computing Uncertainties
	2.1.4 Evaluating Uncertainty Estimates

	2.2 Deep Generative Models
	2.2.1 Normalising Flows
	2.2.2 Variational Autoencoders

	2.3 Summary

	3 Depth Uncertainty in Neural Networks
	3.1 Motivation
	3.2 Depth Uncertainty Networks
	3.2.1 Probabilistic Model: Depth as a Random Variable
	3.2.2 Inference in DUNs

	3.3 Experiments
	3.3.1 Comparing MLL and VI training
	3.3.2 Toy Datasets
	3.3.3 Tabular Regression
	3.3.4 Image Classification
	3.3.5 DUNs for Neural Architecture Search
	3.3.6 DUNs for Active Learning

	3.4 Related Work
	3.5 Summary

	4 Bayesian Deep Learning via Subnetwork Inference
	4.1 Motivation
	4.2 Subnetwork Posterior Approximation
	4.3 Background: Linearised Laplace
	4.4 Linearised Laplace Subnetwork Inference
	4.5 Subnetwork Selection
	4.6 Experiments
	4.6.1 How does Subnetwork Inference preserve Posterior Predictive Uncertainty?
	4.6.2 Subnetwork Inference in Large Models vs Full Inference over Small Models
	4.6.3 Image Classification under Distribution Shift

	4.7 Scope and Limitations
	4.8 Related Work
	4.9 Summary

	5 Sparse-MoEs meet Efficient Ensembles
	5.1 Motivation
	5.2 Preliminaries
	5.2.1 Vision Transformers and Sparse MoEs
	5.2.2 Ensembles of Neural Networks
	5.2.3 Pre-training and Fine-tuning

	5.3 Sparse MoEs meet Ensembles
	5.4 Efficient Ensemble of Experts
	5.4.1 The Architecture
	5.4.2 Ablation Studies: Partitioning and Tiling
	5.4.3 Comparison with other Efficient Ensembling Strategies

	5.5 Evaluation
	5.6 Related Work
	5.7 Summary

	6 A Generative Model of Symmetry Transformations
	6.1 Motivation
	6.2 Symmetry-aware Generative Model (SGM)
	6.2.1 Learning

	6.3 Further Intuitions and Motivations
	6.3.1 Practical Considerations
	6.3.2 Modelling Choices

	6.4 Experiments
	6.4.1 Learning Symmetries
	6.4.2 VAE Data Efficiency

	6.5 Related Work
	6.6 Summary

	7 Conclusion
	7.1 Future Directions

	References
	Appendix A DUN Details
	A.1 Shape and Size Adaptation
	A.2 Experimental Setup
	A.2.1 Toy Dataset Experiments
	A.2.2 Regression Experiments
	A.2.3 Image Experiments
	A.2.4 NAS Experiments
	A.2.5 Active Learning Experiments
	A.2.6 Datasets


	Appendix B Subnetwork Inference Details
	B.1 Updating the prior precision for uncertainty estimation with subnetworks
	B.2 Experimental Setup
	B.2.1 Toy Experiments
	B.2.2 UCI Experiments
	B.2.3 Image Experiments
	B.2.4 Datasets


	Appendix C Sparse MoE Details
	C.1 Experiment Settings
	C.1.1 ViT Model Specifications
	C.1.2 Upstream Setting
	C.1.3 Downstream Setting
	C.1.4 Hyperparameter Sweep for Fine-tuning
	C.1.5 Details about the (Linear) Few-shot Evaluation
	C.1.6 List of Datasets
	C.1.7 Sparse MoEs meet Ensembles Experimental Details
	C.1.8 Multiple Predictions without Tiling or Partitioning Details

	C.2 Compatibility and Adaptation of the Upstream Checkpoints
	C.2.1 Efficient Ensemble of Experts
	C.2.2 Batch Ensembles (BE)
	C.2.3 MIMO

	C.3 Implementation Details of Efficient Ensemble of Experts
	C.3.1 Training Loss
	C.3.2 Auxiliary Losses
	C.3.3 Memory Requirements versus V-MoE

	C.4 Efficient Ensemble of Experts and V-MoE Relative Improvements per ViT Family
	C.5 From Batch Ensembles to Sparse MoEs
	C.6 Batch Ensembles versus Efficient Ensemble of Experts
	C.7 Efficient Ensemble Comparisons
	C.7.1 Batch Ensembles
	C.7.2 MC Dropout V-MoEs
	C.7.3 MIMO V-MoEs

	C.8 Additional Experimental Results
	C.8.1 Static versus Adaptive Combination
	C.8.2 An Additional Motivating Experiment – Deep Ensembles of V-MoE with Fewer Experts
	C.8.3 The Roles of Ensemble Diversity and Individual Model Performance
	C.8.4 Extended Results for Few-shot Learning
	C.8.5 Extended Results for OOD Detection
	C.8.6 Extended Results for ImageNet
	C.8.7 Additional CIFAR10, CIFAR100, Flowers, and Pets Results
	C.8.8 Efficient Ensemble of Experts and V-MoE with larger values of K and M
	C.8.9 Extended Results for the Tiling with Increasing Parameter Sharing Ablation
	C.8.10 Summary for NLL under Distribution Shift
	C.8.11 Preliminary ImageNet Results without Pre-training
	C.8.12 Upstream & Downstream versus Downstream-only Ensembles

	C.9 FLOPs Numbers
	C.10 Additional Algorithm Overview Diagrams

	Appendix D Generative Model of Symmetries Details
	D.1 Connections to MLL Optimization
	D.2 Further Practical Considerations
	D.3 Experimental Setup
	D.3.1 MNIST under affine transformations
	D.3.2 MNIST under colour transformations
	D.3.3 dSprites under affine transformations
	D.3.4 GalaxyMNIST under affine and colour transformations
	D.3.5 PatchCamelyon under affine and colour transformations
	D.3.6 VAE, AugVAE, and InvVAE
	D.3.7 Parametrisations of Symmetry transformations

	D.4 Comparisons to LieGAN
	D.5 PatchCamelyon — Boundary Effects
	D.6 Additional Results


