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Figure 1: Left: graphical model. Right: computational model. Each block’s activation is passed through the output block. < _M_ 0850
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Define Likelihood and Categorical Prior:
po(y|x,d); p(d) = Cat(d)

We formulate a variational objective over ResNet

Tractable Categorical Posterior: = depth which can be evaluated exactly. It allows for
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>D p(d=i) - 1Y, ply™|x), d=i) _A = tribution over depth. We leverage this distribution

to prune our networks, making test-time inference
cheaper, and to obtain model uncertainty estimates.
l Our training procedure encourages an efficient use

0 of model capacity, making models amenable to prun-

Repeatedly computing the posterior by iterating over

D is expensive. We learn an approximate distribution
over depth ¢(d) and model weights 8 simultaneously

using Variational Inference: Figure 3: Top: spiral functions learnt at different depths of an LDN. Bottom: functions learnt at different depths of a regular network ing. Pruned networks perform competitively with reg-
ELBO(q, 0) = Zfifl\le . (d) :1ng9(y(n)‘x(n)7 d)] (DDN). In all cases the max possible depth is 20. LDNs require less layers for same problems, enabling pruning. ular ones of any depth on a toy spiral dataset, MNIST,
— KL(g(d) || p(d)) Fashion-MNIST and SVHN. They often provide bet-

Minibatch estimator of ELBO is evaluated in closed Better Calibrated Predictions, For Free ter calibrated uncertainty estimates.
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