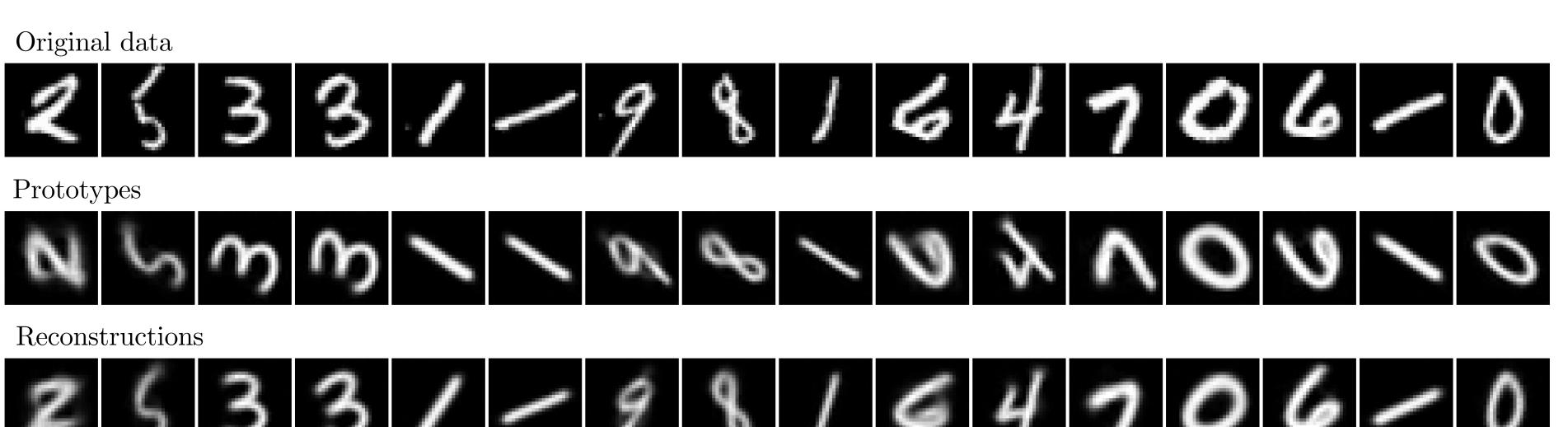
We learn deep generative models whose representations are invariant under symmetry transformations.

Take a picture to see the full paper.

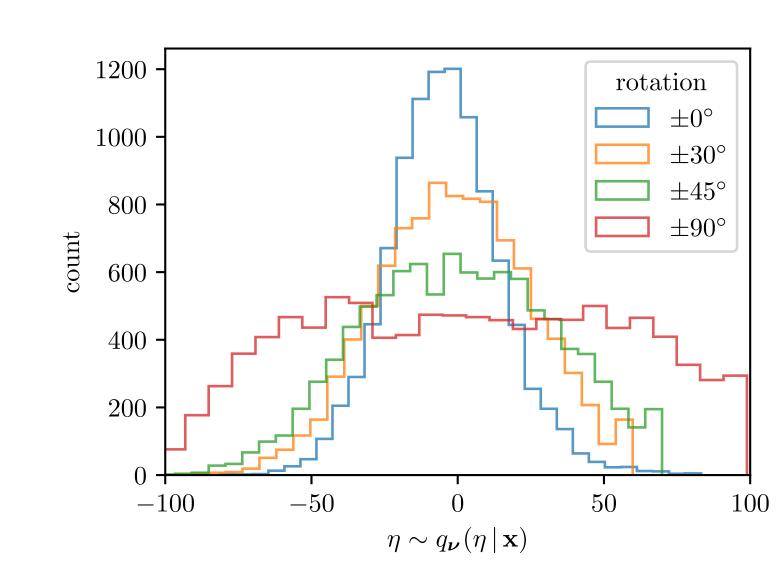
Learning Deep Generative Models with Invariance under Symmetry Transformations

James Urquhart Allingham (jua23@cam.ac.uk), Javier Antorán, Shreyas Padhy, Eric Nalisnick, and José Miguel Hernández-Lobato

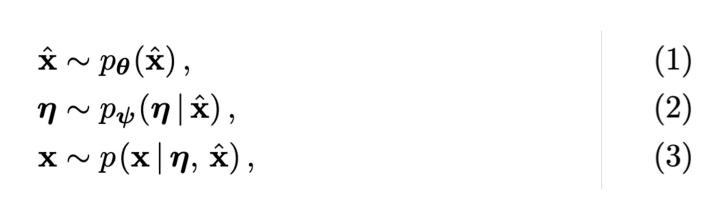
We learn representations of MNIST digits that are invariant to rotations and successfully reconstruct the original digits:

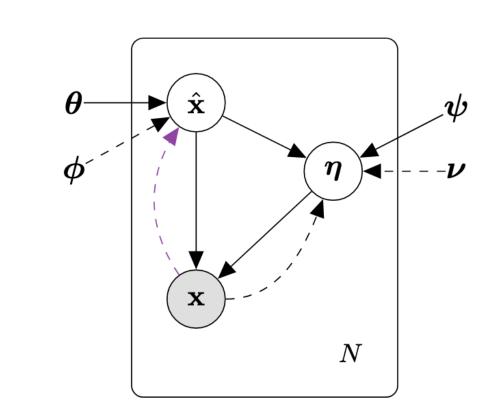


As digits are rotated more, we learn to predict larger angles:



Our model:





— **→** generative --- inference invariant

Affine transformation parameterization:

$$\mathcal{T}_{\eta}(\hat{\mathbf{x}}) = T_{\eta} \cdot \hat{\mathbf{x}}, \quad T_{\eta} = \exp\left(\sum_{i} \eta_{i} G_{i}\right)$$
 (4)

Our training objective:

$$\log p(\mathbf{x}) = \log \iint p(\mathbf{x}, \,\hat{\mathbf{x}}, \,\boldsymbol{\eta}) \,d\boldsymbol{\eta} \,d\hat{\mathbf{x}}$$
(5)

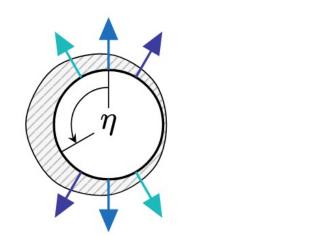
$$= \log \underset{q_{\nu}(\boldsymbol{\eta} \mid \mathbf{x})}{\mathbb{E}} \left[\frac{p(\mathbf{x} \mid \mathbf{x}, \boldsymbol{\eta}) p_{\psi}(\boldsymbol{\eta} \mid \mathbf{x}) p_{\theta}(\mathbf{x})}{q_{\nu}(\boldsymbol{\eta} \mid \mathbf{x}) q_{\phi}(\hat{\mathbf{x}} \mid \mathbf{x})} \right]$$

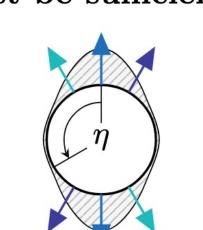
$$\geq \underset{\sim}{\mathbb{E}} \left[\log p(\mathbf{x} \mid \hat{\mathbf{x}}, \boldsymbol{\eta}) \right] - \underset{\sim}{\mathbb{E}} \left[D_{VV}(q_{v} \mid p_{v}) \right] - D_{VV}(q_{v} \mid p_{\theta}) = -f(\boldsymbol{\theta}, \boldsymbol{\eta}, \boldsymbol{\phi}, \boldsymbol{\nu})$$

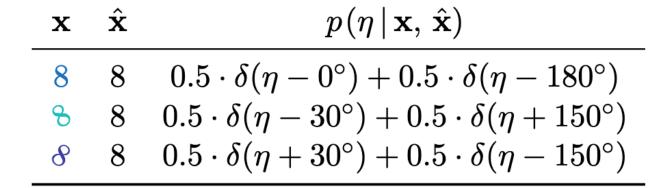
$$(6)$$

$\geq \underset{q_{\boldsymbol{\nu}}}{\mathbb{E}} \left[\log p(\mathbf{x} \,|\, \hat{\mathbf{x}}, \,\boldsymbol{\eta}) \right] - \underset{q_{\boldsymbol{\sigma}}}{\mathbb{E}} \left[D_{\mathrm{KL}} \left(q_{\boldsymbol{\nu}} \,||\, p_{\boldsymbol{\psi}} \right) \right] - D_{\mathrm{KL}} \left(q_{\boldsymbol{\phi}} \,||\, p_{\boldsymbol{\theta}} \right) \equiv -\mathcal{L} \left(\boldsymbol{\theta}, \,\boldsymbol{\psi}, \,\boldsymbol{\phi}, \,\boldsymbol{\nu} \right) \quad (7)$

Conjecture 1: $p_{\psi}(\eta \mid \hat{\mathbf{x}})$ must be sufficiently flexible.

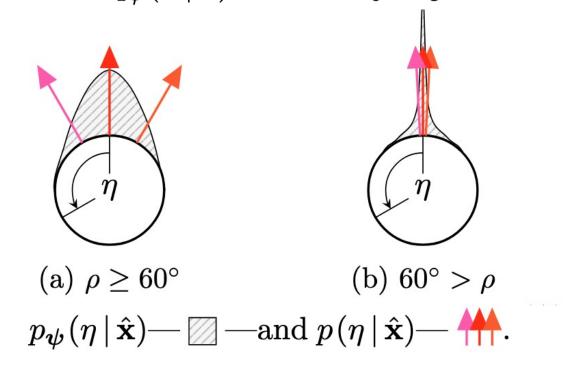






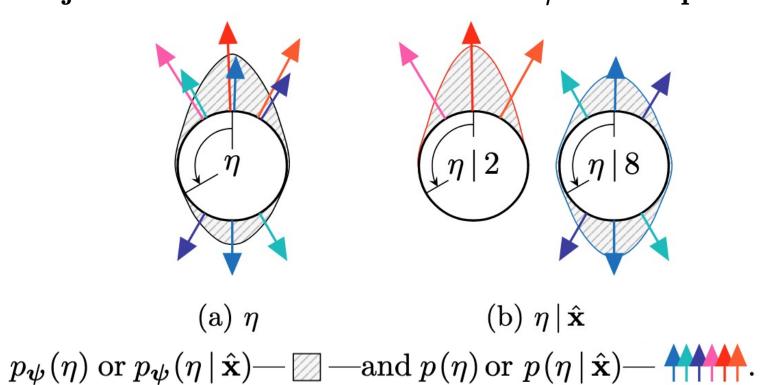
(b) Flexible $p_{\psi}(\eta \mid \hat{\mathbf{x}})$ (a) Simple $p_{\psi}(\eta \mid \hat{\mathbf{x}})$ $p_{\boldsymbol{\psi}}(\eta \mid \hat{\mathbf{x}}) - \square - \text{and } p(\eta \mid \hat{\mathbf{x}}) -$

Conjecture 2: $q_{\phi}(\hat{\mathbf{x}} | \mathbf{x})$ must be *fully* invariant w.r.t η .



_					
		$ ho \geq 60^\circ$		$60^{\circ} > \rho$	
	x	$\hat{\mathbf{x}}$	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$	$\hat{\mathbf{x}}$	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$
	2	2	$\delta(\eta-0^\circ)$	2	$\delta(\eta-0^\circ)$
	2	2	$\delta(\eta-30^\circ)$	2	$\delta(\eta-0^\circ)$
	2	2	$\delta(\eta+30^\circ)$	2	$\delta(\eta-0^\circ)$

Conjecture 3: The distribution over η must depend on $\hat{\mathbf{x}}$.



x	â	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$
2	2	$\delta(\eta-0^\circ)$
2	2	$\delta(\eta-30^\circ)$
2	2	$\delta(\eta+30^\circ)$
8	8	$0.5 \cdot \delta(\eta - 0^\circ) + 0.5 \cdot \delta(\eta - 180^\circ)$
8	8	$0.5 \cdot \delta(\eta - 30^\circ) + 0.5 \cdot \delta(\eta + 150^\circ)$
8	8	$0.5 \cdot \delta(\eta + 30^{\circ}) + 0.5 \cdot \delta(\eta - 150^{\circ})$