We study the **combination** of **ensembles** and sparse conditional models. They are complementary, providing strong predictive performance and uncertainty calibration. We propose a new algorithm with the **best of both worlds**.

# Sparse MoEs meet Efficient Ensembles



James U Allingham (jua230cam.ac.uk) Florian Wenzel Zelda E Mariet Basil Mustafa Joan Puigcerver Neil Houlsby Ghassen Jerfel Vincent Fortuin Balaji Lakshminarayanan Jasper Snoek Dustin Tran Carlos Riquelme Rodolphe Jenatton (rjenatton@google.com)





Take a picture to see the full paper.



#### **Sparse MoEs vs Ensembles Summary**

|                | Predictions | Combinations                  | Conditional Computation   | Cost        |
|----------------|-------------|-------------------------------|---------------------------|-------------|
| Sparse MoEs    | Single      | Activation level              | Yes, adaptively per-input | pprox dense |
| Ensembles      | Multiple    | Prediction level              | No, Static                | > dense     |
| E <sup>3</sup> | Multiple    | Activation & prediction level | Yes, adaptively per-input | pprox dense |

## **Static (M) vs Adaptive (K) Ensembling** (yellow is better)



#### Highlighted Results (lower is better)



### E<sup>3</sup> Algorithm Overview





 $|MLP_2(\boldsymbol{h}_{i,1})|$ 

 $\rightarrow | \texttt{MLP}_3(\boldsymbol{h}_{i,1}) |$ 

 $\rightarrow | \mathrm{MLP}_6(h_{i,2}) |$ 

 $\rightarrow$ 

UNIVERSITY OF CAMBRIDGE Google Al

Combine

 $h_{2,1}$ 

 $h_{3,1}$ 

 $h_{1,2}$ 

 $h_{2,2}$ 

88

Ensemble

(Mean)