Google DeepMind

A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models
James Urquhart Allingham * $\dagger 1$ Jie Ren *2 Michael W. Dusenberry ${ }^{2}$ Xiuye Gu ${ }^{3}$ Yin Cui ${ }^{\dagger 4}$ Dustin Tran ${ }^{2}$ Jeremiah Zhe Liu ${ }^{\dagger 35}$ Balaji Lakshminarayanan ${ }^{2}$

Given a zero-shot image classifier and a large pool of prompts, we automatically score the prompts and ensemble those that are most suitable for a particular downstream dataset, without access to labeled validation data.

Zero-shot classification with zero-shot prompt ensembling (ZPE)

Logits are calculated by combining text and image representations. The final text representation is a weighted ensemble of representations corresponding to different prompts. The ZPE scores for weighting each prompt are calculated without access to any labeled training data.

Max logit scoring	ZPE scoring - removing bias
A simple but biased baseline:	
1. logits $=\mathrm{Z}_{\mathrm{img}} \cdot \mathrm{Z}_{\mathrm{txt}}{ }^{\top}{ }^{\text {a }}$ (Shape: $\mathrm{N} \times \mathrm{C}$.	2. logits ${ }_{\text {pretrain }}=\mathrm{Z}_{\text {pretrain }} \cdot \mathrm{Z}_{\mathrm{txt}}{ }^{\top} \quad$ \# Shape: N^{\prime} 3.
2. max_logits $=\max _{c}$ logits ${ }^{\text {a }}$ (Shape: N.	$E_{\text {pretrain }}=\frac{1}{N^{\prime}} \sum \operatorname{logits~}_{\text {pretrain,n }} \quad$ \# Shape: 1 x
3. $s_{p}=\frac{1}{N} \sum_{n=1}^{N} \max _{-10 g i t s_{n}}$	4. $E_{\text {test }}=\frac{1}{N} \sum^{N} \operatorname{logits}_{n}$
Top 10 ImageNet prompts: $\quad N \sum_{n=1}$	
a example of a person practicing $\}$ • example of a person using $\}$ • a cropped photo of a $\}$ • a photo of the $\}$ • a photo of the small $\}$ • a cropped photo of the $\}$ a photo of the large $\} \cdot$ a example of the person $\}$ • a example of a person $\} \cdot$ a example of $\}$	5. $\operatorname{logits}_{\text {normalized }}=\operatorname{logits}-\left(E_{\text {pretrain }}+E_{\text {test }}\right) / 2$ 6. max_logits $=\max _{c}$ logits $_{\text {normalized }}$ \# Shape: 7. $s_{p}=\frac{1}{N} \sum^{N}$ max_logits $_{n}$
Prompts are biased towards large scores due to: 1. Word frequency bias - for prompts containing words that appear frequently in the pre-training data. 2. Spurious concept frequency bias - for prompts that contain words mapping to common, but irrelevant, concepts in test images. E.g., images often contain pictures of people.	Top 10 ImageNet prompts:
	itap of a $\}$ • itap of the $\}$ • itap of $m y\}$ • a black and white photo of a $\}$ • a high contrast photo of a $\} \cdot$ a low contrast photo of a $\} \cdot$ a photo of a large $\} \cdot$ a photo of the large $\} \cdot$ a black and white photo of the $\} \cdot$ a high contrast photo of the $\}$
	We address long tails by applying softmax to the scores, and do (optional) prompt selection using the Median Absolute Deviation to detect outliers.

Zero-shot accuracy results for CLIP-B/16												
	ImageNet		Imagenet-A		ageNet-R		mageNe-Sketch		Imagenet-V2		Avg	
class name	63.94		46.01		74.92		44.12		57.97		57.39	
'A photo of g.'	66.37		47.47		73.78		45.84		60.46		58.78	
hand-crafted, equal average	68.31		49.13		77.31		47.65		61.83		60.85	
pool set, equal average	67.59		49.35		77.33		46.92		61.37		60.51	
max-logit scoring	67.63		49.37		77.38		${ }^{46.95}$		61.39		60.55	
ZPE (weighted average)	68.56		49.61		77.69		47.92		62.23		61.20	
ZPE (prompt selection, ours)	68.60		49.63		77.62		47.99		62.21		61.21	
	Caltech	Cars	C-10	C-100	DTD	Euro	Food	Flowers	Pets	Resisc	Sun	Avg
class name	77.84	61.60	87.30	58.59	44.04	46.90	86.68	63.57	81.38	53.74	60.70	${ }^{65.67}$
'A photo of \%',	82.73	63.45	88.36	65.49	42.93	47.85	88.19	66.84	87.74	55.96	59.95	68.13
hand-crafted, equal average	82.82	64.17	89.10	65.90	45.64	51.60	88.66	71.23	88.91	65.44	63.87	70.67
pool set, equal average	83.60	63.16	89.56	65.56	45.96	54.63	87.79	63.62	80.87	58.70	65.32	68.98
max-logit scoring	83.56	63.16	89.55	65.53	46.28	54.48	87.81	63.70	80.87	59.02	65.39	69.03
ZPE (weighted average)	84.68	64.13	89.34	66.40	46.54	53.42	88.50	67.64	86.81	64.18	66.15	20.71
ZPE (prompt selection, ours)	85.54	64.62	89.30	66.63	46.28	53.82	88.61	70.17	88.72	64.22	64.70	71.15

Other models

hand-crated, equal average	59.48	42.52	59.36	5.15
pool set, equal average	58.24	42.17	56.0	52.
ZPE (weighted average)	59.68	42.97	58.79	54.89
ZPE (prompt selection, ours)	59.90	42.87	59.64	55.46
Lit ViT-B/32				
hand-crafted, equal average	68.13	55.25	70.	6.33
pool set, equal average	66.93	54.51	68.55	64.94
ZPE (weighted average)	68.60	55.67	70.81	66.89
ZPE (prompt selection, ours)	68.88	55.72	71.78	67.58
Lit ViTL/16				
hand-crafted, equal average	78.55	72.65	77.73	7.551
pool set, equal average	77.49	71.74	75.58	74.74
ZPE (weighted average)	78.90	73.11	77.94	76.79
ZPE (prompt selection, ours)	79.26	73.27	78.71	77.38

