Equivariance and Symmetries in CNNs

(Stuff that Taco Cohen did)

James Allingham and Omer Sella

Equivariance

(VS invariance)

Equivariance Visualised

2				
	3			
		2		
	1		1	
1				

2			
	3		
		2	
	1		1
1			

Invariance Visualised

Group Equivariant CNNs¹

[1] Cohen, Taco S., and Welling, Max. "Group equivariant convolutional networks." *International conference on machine learning*. 2016.

Rotations in CNNs

A *little* bit of group theory!

- A *symmetry* of an object is a transformation that leaves the object invariant.
- A *symmetry group* is a set of transformations such that for two symmetry transformations **g** and **h**:
 - *g*.*h* is also a symmetry.
 - g^{-1} is also a symmetry.
 - g^{-1} . g is the identity transformation e.
- An example is 2D integer translations (\mathbb{Z}^2) :
 - The group operation (.) is addition (+).
 - (n,m) + (p,q) = (n+p,m+q).
 - This is the group for standard (translation invariant) convolutions!

A couple more groups

The group **p4**:

The group **p4m**:

$$g(r,u,v) = \begin{bmatrix} \cos(\frac{r\pi}{2}) & -\sin(\frac{r\pi}{2}) & u\\ \frac{r\pi}{2} & \cos(\frac{r\pi}{2}) & v\\ \sin(\frac{r\pi}{2}) & \cos(\frac{r\pi}{2}) & v\\ 0 & 0 & 1 \end{bmatrix} \qquad g(m,r,u,v) = \begin{bmatrix} (-1)^m \cos(\frac{r\pi}{2}) & -(-1)^m \sin(\frac{r\pi}{2}) & u\\ \frac{r\pi}{2} & \cos(\frac{r\pi}{2}) & v\\ 0 & 0 & 1 \end{bmatrix}$$

To act on a pixel (a point in \mathbb{Z}^2) with coordinates (p,q) we multiply the matrix g with the coordinate vector x = (p,q,1) of the point: gx.

What is an image? What is a filter?

$$f:\mathbb{Z}^2 \to \mathbb{R}^K$$

How do we transform a filter?

$$[L_g f](x) = [f \circ g^{-1}](x) = f(g^{-1}x)$$
$$L_g L_h = L_{hg}$$
For example, if g is a translation by $t = (u, v)$ then we ge

$$g^{-1}x = x - t$$

Correlation in CNNs

$$[f \star \psi](x) = \sum_{y \in \mathbb{Z}^2} \sum_{k=1}^K f_k(y) \psi_k(y-x)$$

$$\begin{bmatrix} [L_t f] \star \psi \end{bmatrix}(x) = \begin{bmatrix} L_t [f \star \psi] \end{bmatrix}(x) \longleftarrow$$
$$\begin{bmatrix} [L_r f] \star \psi \end{bmatrix}(x) = \begin{bmatrix} L_{r^{-1}} [f \star \psi] \end{bmatrix}(x) \longleftarrow$$

Correlation in **G**-CNNs $[f \star \psi](g) = \sum_{y \in \mathbb{Z}^2} \sum_{k=1}^{K} f_k(y) \psi_k(g^{-1}y)$

 $f \star \psi : G o \mathbb{R}^K$

 $[L_u f] \star \psi = L_u [f \star \psi] \longleftarrow \mathbb{C}$

Practical considerations

- What about biases?
- What about other layers?
 - Pooling
 - Elementwise non-linearities
 - Batch-norm
 - Skip connections
- Efficient implementation (https://github.com/tscohen/GrouPy)

Filter transformation:

 $F = K^{l} \times K^{l-1} \times S^{l-1} \times n \times n \qquad F^{+}[i, s, j, s, u, v] = F[i, j, \overline{s}, \overline{u}, \overline{v}]$ $F^{+} = K^{l} \times S^{l} \times K^{l-1} \times S^{l-1} \times n \times n \qquad \overline{s}, \overline{u}, \overline{v} = g^{-1}(g(s', 0, 0)^{-1}g(s, u, v))$

Standard convolution:

$$K^{l} \times S^{l} \times K^{l-1} \times S^{l-1} \times n \times n \longrightarrow K^{l}S^{l} \times K^{l-1}S^{l-1} \times n \times n$$

Results

Network	Test Error (%)
Larochelle et al. (2007)	$10.38\pm\ 0.27$
Sohn & Lee (2012)	4.2
Schmidt & Roth (2012)	3.98
Z2CNN	5.03 ± 0.0020
P4CNNRotationPooling	3.21 ± 0.0012
P4CNN	$\textbf{2.28} \pm \textbf{0.0004}$

Table 1. Error rates on rotated MNIST (with standard deviation under variation of the random seed).

Network	G	CIFAR10	CIFAR10+	Param.
All-CNN	\mathbb{Z}^2	9.44	8.86	1.37M
	p4	8.84	7.67	1.37M
	p4m	7.59	7.04	1.22M
ResNet44	\mathbb{Z}^2	9.45	5.61	2.64M
	p4m	6.46	4.94	2.62M

Table 2. Comparison of conventional (i.e. \mathbb{Z}^2), p4 and p4m CNNs on CIFAR10 and augmented CIFAR10+. Test set error rates and number of parameters are reported.

Spherical CNNs²

[2] Cohen, Taco S., et al. "Spherical CNNs." (2018).

Flat earth?

If you still aren't convinced...

The unit sphere

- The unit sphere (S^2) is the points $\mathbf{x} = (x, y, z)$ such that $\sqrt{x^2 + y^2 + z^2} = 1$.
- Because of the constraint it is possible to parameterize the unit sphere with two angles $\alpha \in [0, 2\pi]$ and $\beta \in [0, \pi]$.
- Then we have:

 $x = \sin \beta \, \cos \alpha$ $y = \sin \beta \, \sin \alpha$ $z = \cos \beta$

A spherical image/filter is then a function $f: S^2 \rightarrow \mathbb{R}^K$

Rotations in 3D - SO(3)

- SO(3) can be represented by 3×3 matrices *R*.
- To rotate a point in 3D we simply compute Rx.
- These rotations preserve distance (||Rx|| = ||x||) and orientation (|R| = +1).
- One parameterization of SO(3) is the ZYZ Euler angles: $\alpha \in [0, 2\pi], \beta \in [0, \pi]$, and $\gamma \in [0, 2\pi]$, giving the following rotation matrix:

 $\begin{aligned} \cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\gamma & -\cos\gamma\sin\gamma - \cos\beta\cos\gamma\sin\alpha & \cos\alpha\sin\beta \\ \cos\alpha\sin\gamma + \cos\beta\cos\gamma\sin\alpha & \cos\alpha\cos\gamma - \cos\beta\sin\alpha\sin\gamma & \sin\alpha\sin\beta \\ & -\cos\gamma\sin\beta & & \sin\beta\sin\gamma & \cos\beta \end{aligned}$

Spherical correlation

$$[f \star \psi](R) = \langle f, L_R \psi \rangle = \int_{S^2} \sum_{k=1}^K f_k(x) \psi_k(R^{-1}x) dx$$

 $[L_R f](x) = f(R^{-1}x)$

 $dx = \frac{d\alpha \sin\beta d\beta}{4\pi}$

$$\int_{S^2} f(Rx) dx = \int_{S^2} f(x) dx$$

 $\langle f, L_R \psi \rangle = \langle L_{R^{-1}} \overline{f, \psi} \rangle$

SO(3) correlation $[f \star \psi](R) = \langle f, L_R \psi \rangle = \int \sum f_k(Q) \psi_k(R^{-1}Q) dQ$ SO(3) k=1 $[L_R f](Q) = \overline{f(R^{-1}Q)}$ $dQ = \frac{d\alpha \sin \beta d\beta d\gamma}{8 \pi^2}$ $\langle f, L_R \psi \rangle = \langle L_{R^{-1}} f, \psi \rangle$

 $\left[[L_Q f] \star \psi \right](R) = \left\langle L_Q f, L_R \psi \right\rangle = \left\langle f, L_{Q^{-1}R} \psi \right\rangle = [f \star \psi](Q^{-1}R) = [L_Q [f \star \psi]](R)$

Practical Considerations & Implementation

- Theory presented is for continuous data not discrete.
- Implemented using a generalized FFT for spherical and SO(3) signals.

 $\mathcal{F}(f \star \psi) = \mathcal{F}(f)\mathcal{F}(\psi)$

• https://github.com/jonas-koehler/s2cnn

Results

Figure 4: Two MNIST digits projected onto the sphere using stereographic projection. Mapping back to the plane results in non-linear distortions.

	NR / NR	R / R	NR / R
planar	0.98	0.23	0.11
spherical	0.96	0.95	0.94

Results

Ours

0.701 (3rd) 0.711 (2nd) 0.699 (3rd) 0.676 (2nd) 0.756 (2nd)

Table 2: Results and best competing methods for the SHREC17 competition.

Gauge Equivariant CNNs

and the Icosahedral CNN³

[3] Cohen, Taco S., et al. "Gauge equivariant convolutional networks and the icosahedral cnn." *arXiv* preprint arXiv:1902.04615(2019).

Time for some Gauge Theory!

Icosahedral CNN

Implementation

GConv(f,w) = conv2d(GPad(f),expand(w))

Results

Arch.	N/N	N/I	N/R	I/ I	I / R	R / R
S2CNN	99.38	99.38	99.38	99.12	99.13	99.12
NP+NE	99.29	25.50	16.20	98.52	47.77	94.19
NE	99.42	25.41	17.85	98.67	60.74	96.83
NP	99.27	36.76	21.4	98.99	61.62	97.87
S2S	97.81	97.81	55.64	97.72	58.37	89.92
S2R	98.99	98.99	59.76	98.62	55.57	98.74
R2R	99.43	99.43	69.99	99.38	66.26	99.31

Key takeaways

- If you believe your predictions should be equivariant to some symmetries in the data you need to build it into your model!
- For rotations and flips on the plane Taco Cohen has some fairly easy to use code available so you might as well try it out.
- Similarly for rotations on the sphere.

References

[1] Cohen, Taco S., and Welling, Max. "Group equivariant convolutional networks." *International conference on machine learning*. 2016.

[2] Cohen, Taco S., et al. "Spherical CNNs." (2018).

[3] Cohen, Taco S., et al. "Gauge equivariant convolutional networks and the icosahedral cnn." *arXiv* preprint arXiv:1902.04615(2019).