
Equivariance and 

Symmetries in CNNs
(Stuff that Taco Cohen did)

James Allingham and Omer Sella



Equivariance
(VS invariance)



Equivariance Visualised
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Invariance Visualised
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Group Equivariant CNNs1

[1] Cohen, Taco S., and Welling, Max. "Group equivariant convolutional networks." International 

conference on machine learning. 2016.



Rotations in CNNs
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A little bit of group theory!

● A symmetry of an object is a transformation that leaves the object invariant.

● A symmetry group is a set of transformations such that for two symmetry 

transformations g and h:

● 𝑔. ℎ is also a symmetry. 

● 𝑔−1 is also a symmetry.

● 𝑔−1. 𝑔 is the identity transformation 𝑒.

● An example is 2D integer translations (ℤ2):

● The group operation (.) is addition (+).

● 𝑛,𝑚 + 𝑝, 𝑞 = (𝑛 + 𝑝,𝑚+ 𝑞).

● This is the group for standard (translation invariant) convolutions!



A couple more groups

The group p4: The group p4m:

To act on a pixel (a point in ℤ2) with coordinates (𝑝, 𝑞) we multiply the matrix 𝑔
with the coordinate vector 𝒙 = (𝑝, 𝑞, 1) of the point: 𝑔𝑥.



What is an image? What is a filter?

𝑓: ℤ2 → ℝ𝐾

How do we transform a filter?

[𝐿𝑔𝑓] 𝑥 = 𝑓 ∘ 𝑔−1 𝑥 = 𝑓(𝑔−1𝑥)

𝐿𝑔𝐿ℎ = 𝐿ℎ𝑔

For example, if 𝑔 is a translation by 𝑡 = 𝑢, 𝑣 then we get

𝑔−1𝑥 = 𝑥 − 𝑡



Correlation in CNNs

[𝐿𝑡𝑓] ⋆ 𝜓 𝑥 = [𝐿𝑡 𝑓 ⋆ 𝜓 ](𝑥)

[𝐿𝑟𝑓] ⋆ 𝜓 𝑥 = [𝐿𝑟−1 𝑓 ⋆ 𝜓 ](𝑥)

👍

👎



Correlation in G-CNNs

𝑓 ⋆ 𝜓: 𝐺 → ℝ𝐾

𝐿𝑢𝑓 ⋆ 𝜓 = 𝐿𝑢 𝑓 ⋆ 𝜓 🔥



Practical considerations

● What about biases?

● What about other layers?

• Pooling

• Elementwise non-linearities

• Batch-norm

• Skip connections

● Efficient implementation (https://github.com/tscohen/GrouPy)



Implementation

Filter transformation

Standard convolution

𝐹 = 𝐾 𝑙 × 𝐾 𝑙−1 × 𝑆𝑙−1 × 𝑛 × 𝑛

𝐹+ = 𝐾 𝑙 × 𝑆𝑙 × 𝐾 𝑙−1 × 𝑆𝑙−1 × 𝑛 × 𝑛

𝐹+[𝑖, 𝑠, 𝑗, 𝑠, 𝑢, 𝑣] = 𝐹[𝑖, 𝑗, 𝑠, 𝑢, 𝑣]

𝑠, 𝑢,𝑣 = 𝑔−1(𝑔(𝑠 ́,0,0)−1𝑔 𝑠, 𝑢, 𝑣 )

Filter transformation:



Implementation

Filter transformation

Standard convolution

Standard convolution:

𝐾 𝑙 × 𝑆𝑙 ×𝐾 𝑙−1 × 𝑆𝑙−1 × 𝑛 × 𝑛 𝐾 𝑙𝑆𝑙 ×𝐾 𝑙−1𝑆𝑙−1 × 𝑛 × 𝑛



Results



Spherical CNNs2

[2] Cohen, Taco S., et al. "Spherical CNNs." (2018).



Flat earth?



If you still aren’t convinced...



The unit sphere

● The unit sphere (𝑆2) is the points 𝐱 = (𝑥, 𝑦, 𝑧) such that 

𝑥2 + 𝑦2 + 𝑧2 = 1. 

● Because of the constraint it is possible to parameterize the 

unit sphere with two angles 𝛼 ∈ [0, 2𝜋] and  𝛽 ∈ 0, 𝜋 .

● Then we have:

𝛽

𝛼𝑥 = sin 𝛽 cos𝛼
𝑦 = sin𝛽 sin𝛼
𝑧 = cos𝛽

A spherical image/filter is then a function 𝑓: 𝑆2 → ℝ𝐾



Rotations in 3D - SO(3)

● SO(3) can be represented by 3 × 3 matrices 𝑅.

● To rotate a point in 3D we simply compute 𝑅𝑥.

● These rotations preserve distance ( 𝑅𝑥 = 𝑥 ) and orientation ( 𝑅 = +1).

● One parameterization of SO(3) is the ZYZ Euler angles: 𝛼 ∈ 0, 2𝜋 , 𝛽 ∈ 0, 𝜋 , 

and 𝛾 ∈ 0, 2𝜋 , giving the following rotation matrix:



Spherical correlation

𝑓, 𝐿𝑅𝜓 = 𝐿𝑅−1𝑓, 𝜓

න
𝑆2
𝑓 𝑅𝑥 𝑑𝑥 = න

𝑆2
𝑓 𝑥 𝑑𝑥

𝑑𝑥 = 
𝑑𝛼sin𝛽𝑑𝛽

4 𝜋

[𝐿𝑅𝑓](𝑥) = 𝑓(𝑅−1𝑥)



SO(3) correlation

𝑑𝑄 = 
𝑑𝛼sin 𝛽𝑑𝛽𝑑𝛾

8 𝜋2

[𝐿𝑅𝑓](𝑄) = 𝑓(𝑅−1𝑄)

𝑓, 𝐿𝑅𝜓 = 𝐿𝑅−1𝑓, 𝜓

[𝐿𝑄𝑓] ⋆ 𝜓 𝑅 = 𝐿𝑄𝑓, 𝐿𝑅𝜓 = 𝑓, 𝐿𝑄−1𝑅𝜓 = 𝑓 ⋆ 𝜓 𝑄−1𝑅 = [𝐿𝑄 𝑓 ⋆ 𝜓] (𝑅)



Practical Considerations & Implementation

● Theory presented is for continuous data not discrete.

● Implemented using a generalized FFT for spherical and SO(3) signals.

ℱ 𝑓 ⋆𝜓 = ℱ(𝑓)ℱ(𝜓)

● https://github.com/jonas-koehler/s2cnn



Results



Results



Gauge Equivariant CNNs 
and the Icosahedral CNN3

[3] Cohen, Taco S., et al. "Gauge equivariant convolutional networks and the icosahedral cnn." arXiv 

preprint arXiv:1902.04615 (2019).



Time for some Gauge Theory!



Icosahedral CNN



Implementation

GConv(f,w) = conv2d(GPad(f),expand(w))



Results



Key takeaways

● If you believe your predictions should be equivariant to some symmetries in 

the data you need to build it into your model!

● For rotations and flips on the plane Taco Cohen has some fairly easy to use 

code available so you might as well try it out.

● Similarly for rotations on the sphere.
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