Equivariance and
Symmetries in CNNs

(Stuff that Taco Cohen did)

James Allingham and Omer Sella
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Group Equivariant CNNs!

[1] Cohen, Taco S., and Welling, Max. "Group equivariant convolutional networks." International
conference on machinelearning. 2016.



Rotations in CNNs
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A little bit of group theory!

e A symmetry of an objectis a transformation that leaves the object invariant.
e A symmetry group is a set of transformations such that for two symmetry
transformations g and h:

® g.his alsoasymmetry.

e g lisalsoasymmetry.

e gl gistheidentity transformation e.
e An example is 2D integer translations (Z?):

e The group operation (.) is addition (+).

e (nm)+(p,q)=m+pm+q).

e This is the group for standard (translation invariant) convolutions!



A couple more groups

The group p4: The group p4m:
i T o 1 - T rm 1
cos (7) —SID(T) u (—1)™cos (7) —(—1)msin(7) u
= r r —
9(r,u,v) sin(;) CoS (7”) 1% g(m,ru,v) = sin(?) cosS (?) %
0 0 1 : 0 0 1

To act on a pixel (a pointin Z?) with coordinates (p, q) we multiply the matrix g
with the coordinate vector x = (p, g, 1) of the point: gx.



What is an image? What is a filter?
f:Z* - R"

How do we transform a filter?
[Lgf1G0) = [f o g™H(x) = f(g™ %)
Lth —_ th
For example, if g is a translation by t = (u, v) then we get

g lx=x—t



Correlation iIn CNNs
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Correlation in G-CNNs .
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Practical considerations

e \What about biases?
e What about other layers?

Pooling

Elementwise non-linearities

Batch-norm

Skip connections
e Efficient implementation (https://github.com/tscohen/GrouPy)



Standard convolution

/

K
1) = D > feWL[Letpie(h)]

hex k=1 '\

Filter transformation

Implementation

Filter transformation:
F=K'xKF1xsSt-1xnxn F*[i,s,j,s,u,v] = F[i,j,s,u,7]

Fr=K!'xS!'xK"1xStixnxn s, u,v= g 1(g(s,0,00"1g(s,u,v))



Standard convolution

/

K
1) = D > feWL[Letpie(h)]
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Filter transformation

Implementation

Standard convolution:

K!xS!x K1 x SU1 % 1 = » KISIxKIFI1gi-1wpnxn



Results

“Network  Test Error (%) Network C CIFARI10 | CIFAR10+ Pafa.m.

Larochelle et al. (7007) 10.38 £ 0.27

P4CNNROt'1t10nP0011ng 3.21 +£ 0.0012
2.28 + 0.0004

Table 2. Comparison of conventional (i.e. Z?), p4 and p4m CNNs
on CIFARI10 and augmented CIFAR10+. Test set error rates and

Table 1. Error rates on rotated MNIST (with standard deviation
number of parameters are reported.

under variation of the random seed).




Spherical CNNs?

[2] Cohen, Taco S., et al. "Spherical CNNs." (2018).



Flat earth?




If you still aren’t convinced...




The unit sphere

e The unit sphere (5%) is the points x = (x,y, z) such that
Jx2+y2+z2=1.
® PBecause of the constraint it is possible to parameterize the

unit sphere with two angles a € [0,27] and B € [0, n].
e Then we have:

X = sinf cosa
y = sinf sina
Z = cosf

A spherical imageffilter is then a function f: 5% - RX




Rotations in 3D - SO(3)

SO(3) can be represented by 3 x 3 matrices R.

To rotate a pointin 3D we simply compute Rx.

These rotations preserve distance (|| Rx|| = ||x||) and orientation (|R| = +1).
One parameterization of SO(3) is the ZYZ Euler angles: a € [0, 2x], B € [0, ],
and y € [0, 2], giving the following rotation matrix:

cosacosfcosy —sinasiny —cosysiny —cosfcosysina cosasinf
cosasiny + cosffcosysina cosacosy —cosfsinasiny sinasinf
—cosysinf sin 8 siny cosf



Spherical correlation

£ IR = {fola) = [ D bR x)dx

SZ k=1

[Lrf1(x) = f(R™'x)

_dasinfdp
41T

dx

f(Rx)dx = | f(x)dx
SZ SZ

{f, L) = (Lg—1f, )



SO(3) correlation

FpI® = (flah) = | Y A@ R

S0(3) k=1

[Lrf1(Q) = fF(RTQ)

dasin fdfdy
8 m?

dQ =

<f» Lry) = <LR-1fﬂP>

[[Lof]* ¥](R) = (Lof, Lr) =(f, Lo-1g¥) = [f * p1(Q™*R) = [Lolf »¥]I(R)




Practical Considerations & Implementation

e Theory presented is for continuous data not discrete.
e Implemented using a generalized FFT for spherical and SO(3) signals.

F(f xy) =F(HF@)

e https://github.com/jonas-koehler/s2cnn



Results

COKE

Figure 4: Two MNIST digits projected onto the
sphere using stereographic projection. Mapping
back to the plane results in non-linear distortions.

planar 0.23
spherical 0.95 0.94




Results

distance sphere-impact

SHREC16-Bai _GIFT
Deng_CM-VGG5-6DB

Ours 0.701 (3rd) 0 711 2nd) 0.699 (3rd) 0.676 (2nd) 0.756 (2nd)

Table 2: Results and best competing methods for the SHREC17 competition.
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Gauge Equivariant CNNs

and the Icosahedral CNN?3

[3] Cohen, Taco S., et al. "Gauge equivariant convolutional networks and the icosahedral cnn." arXiv
preprintarXiv:1902.04615 (2019).



Time for some Gauge Theory!




lcosahedral CNN
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Implementation
GConv(f,w) = conv2d(GPad(f),expand(w))




Results

99.12
94.19
99.42 0.4 7.85 5 650.74 96.83

99.27
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Key takeaways

e If you believe your predictions should be equivariant to some symmetries in
the data you need to build it into your model!

e For rotations and flips on the plane Taco Cohen has some fairly easy to use
code available so you might as well try it out.

e Similarly for rotations on the sphere.
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