
Bayesian Neural Networks
James Allingham, Javier Antorán & Vincent Fortuin

MLG reading group – 22nd Feb 2023



Outline

• Part 1 – James
• BNN introduction
• BNN challenges and solutions
• BNN properties

• Part 2 – Javier
• Laplace approximation
• linear models
• connections to infinite width limits

• Part 3 – Vincent
• BNN priors

• weight space
• function space



Part 1



What are Bayesian Neural Networks?

x1 x2

h2h1 h3

y

0.60.6
0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.80.8
0.30.3

0.10.1

p(θ | D) =
p(D |θ)p(θ)∫

θ p(D |θ) p(θ) dθ
(1)

p(y∗ | x∗) =

∫
θ

p(y∗ | x∗, θ) p(θ | D)dθ (2)
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Why BNNs?

1 NNs are poorly calibrated – they don’t know when they don’t know!
• “Reject” uncertain predictions.
• Exploration in RL / Bandits.
• Active learning.
• Combining different model’s predictions.
• Bet sizing.
• etc.

2 Choosing hyper-parameters in NNs is hard (or expensive).
3 NNs can’t naturally deal with missing data.

These are all problems that are solved by principled probabilistic models.
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Some challenges:
• Integration!
• Choosing priors. (Part 3)
• High dimensionality.

• Even smaller modern NNs have many parameters > O(106)!
• Storage of covariance matrices requires O(N2) memory.
• Makes approximation difficult.
• Subspace [Izmailov et al., 2020] and subnetwork [Daxberger et al.,

2021b] inference.
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Some challenges:
• Integration!
• Choosing priors. (Part 3)
• High dimensionality.

Figure 1: Subnet inference with Laplace approx. on ResNet-18.



BNNs are hard – integration

• The integrals in eqs. (1) and (2) are intractable!
• BNNs in practice require approximations.

• The integral in the predictive distribution
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Approximating the posterior

Two main approaches:
1 Assuming a simplified form for the posterior p(θ | D), allowing us to

avoid (or simplify) calculating the evidence p(D).

2 Using MCMC methods to sample directly from p(θ | D) without
ever calculating p(D).

Approach 1 – Simplified Posteriors

• Laplace approx. [MacKay, 1992, Daxberger et al., 2021a].
• VI [Hinton and Van Camp, 1993, Graves, 2011, Blundell

et al., 2015, Osawa et al., 2019].
• EP [Hernández-Lobato and Adams, 2015].
• MC Dropout [Gal and Ghahramani, 2016].

• Some issues [Osband, 2016].



Approximating the posterior

Two main approaches:
1 Assuming a simplified form for the posterior p(θ | D), allowing us to

avoid (or simplify) calculating the evidence p(D).
2 Using MCMC methods to sample directly from p(θ | D) without

ever calculating p(D).

Approach 2 – Sampling

• Pionered by Neal [1995], who used HMC [Duane et al., 1987,
Neal, 2012]. “Gold standard”.

• SGLD [Welling and Teh, 2011] & SGHMC [Chen et al.,
2014].

• Biased [Betancourt, 2015].
• No rejection sampling [Garriga-Alonso and Fortuin, 2021].
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• q is a NN parameterised by φ.
• Mean-field assumption: dimensions of θ are independent.
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L(φ) ≈ 1
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(
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(
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,

θ(n) ∼ qφ(θ). (7)



Problems with MFVI for BNNs

Figure 2: MFVI doesn’t provide “in-between” uncertainty, and underfits!
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Figure 2: MFVI doesn’t provide “in-between” uncertainty, and underfits!

• Foong et al. [2020] prove that MFVI (and MC Dropout) cannot
capture “in-between” uncertainty for single hidden layer BNNs.

• They demonstrate this is a problem of approximate inference.
• They show empirically that this also occurs for deeper BNNs

(despite proving that they are universal approximators for µ and σ).
• Farquhar et al. [2020] argue that MFVI is less restrictive with depth.



What are BNN posteriors really like?

Izmailov et al. [2021b] perform full batch HMC for modern NNs to
explore this question.
Note: this is not practical at all! But we can learn a lot.



What are BNN posteriors really like?

Finding 1 – BNNs can achieve significant performance gains
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What are BNN posteriors really like?

Finding 1 – BNNs can achieve significant performance gains
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What are BNN posteriors really like?

Finding 2 – Posterior tempering is not needed

There is little evidence for a “cold posterior” effect [Wenzel et al.,
2020], which seems to be largely caused by data augmentation.

pT (w |D) ∝
(
p(D|w) · p(w)

)1/T (8)

0.03 0.1 0.3 1 3 10
Posterior Temperature T

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

0.03 0.1 0.3 1 3 10
Posterior Temperature T

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

L
og

-L
ik

el
ih

oo
d

0.03 0.1 0.3 1 3 10
Posterior Temperature T

0.000

0.025

0.050

0.075

0.100

0.125

E
C

E
T = 1 SGD Deep Ens



What are BNN posteriors really like?

Finding 3 – Performance is robust to the choice of prior scale

... and pretty similar for diag. Gaussian, MoG, and logistic priors.
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What are BNN posteriors really like?

Finding 4 – BNNs are surprisingly bad under dist. shift
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Addressed in [Izmailov et al., 2021a] with prior choice.



What are BNN posteriors really like?

Finding 5 – Deep ens. and SGMCMC provide distinct predictive
dists. from HMC

Deep ensembles and SGMCMC can provide good generalization.
Deep ensemble predictive distributions are as to HMC as SGLD,
and closer than VI.

Metric HMC
(reference) SGD Deep Ens MFVI SGLD SGHMC SGHMC

CLR
SGHMC

CLR-Prec

CIFAR-10

Accuracy 89.64 83.44 88.49 86.45 89.32 89.38 89.63 87.46
±0.25 ±1.14 ±0.10 ±0.27 ±0.23 ±0.32 ±0.37 ±0.21

Agreement 94.01 85.48 91.52 88.75 91.54 91.98 92.67 90.96
±0.25 ±1.00 ±0.06 ±0.24 ±0.15 ±0.35 ±0.52 ±0.24

Total Var 0.074 0.190 0.115 0.136 0.110 0.109 0.099 0.111
±0.003 ±0.005 ±0.000 ±0.000 ±0.001 ±0.001 ±0.006 ±0.002



What are BNN posteriors really like?

(In an idealised setting...)
1 BNNs can achieve significant performance gains over standard

training and deep ensembles.
2 Posterior tempering is not needed for near-optimal performance,

with little evidence for a “cold posterior” effect (largely caused by
data augmentation).

3 Performance is robust to the choice of prior scale, and relatively
similar for diagonal Gaussian, MoG, and logistic priors.

4 BNNs show surprisingly poor generalization under distribution shift.
Addressed in [Izmailov et al., 2021a] with prior choice.

5 Deep ensembles and SGMCMC can provide good generalization, but
different predictive distributions from HMC. Notably, deep ensemble
predictive distributions are as to HMC as SGLD, and closer than VI.
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