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Introduction



What are energy based models?

Suppose we have access to an unnormalised distribution p̃θ

pθ(x) =
p̃θ(x)
Zθ

. (1)

We call the negative log of p̃θ(x), its energy function

Eθ(x) = − log p̃θ(x). (2)

Energy function equal to − log pθ(x) up to a constant independent of x

pθ(x) =
e−Eθ(x)

Zθ
=⇒ Eθ(x) = − log pθ(x)− logZθ, (3)

Energy Based Models (EBMs)

We use the term Energy Based Model (EBM) for energy functions
Eθ(x) where Zθ =

∫
e−Eθ(x)dx is not tractable.



Why Energy Based Models?

Energy-based models bring us flexibility in

• Model Design: EBMs place fewer restrictions on model design
compared to other generative models (e.g. ARMs, VAEs, NFs).

We just need an Eθ : X → R, such that Zθ is finite.

Not constrained to models with tractable likelihoods.

• Problem Application: The EBM framework is extremely general.
If we can rephrase a problem as a scalar function, we can apply
EBMs...



Example EBM Applications

Figure 1: Examples of EBM applications [LeCun et al., 2006].



Old-school



An Example – Product of Experts [Hinton, 2002]

Product of N experts has the form

pθ(x) =
1

Zθ

N∏
n=1

pn,θ(x) ⇐⇒ log pθ(x) =
N∑

n=1

log pn,θ(x)︸ ︷︷ ︸
−Eθ(x)

− logZθ. (4)

We want to train the model via maximum-likelihood

θ∗ = argmax
θ

log pθ(x), (5)

but Zθ is intractable for general Eθ(x). Take gradient w.r.t. θ

∇θ log pθ(x) = −Eθ(x)−∇θ logZθ (6)

∇θ logZθ = −∇θEx∼pθ(x) [∇θEθ(x)] (7)

Sampling x ∼ pθ(x) is intractable.



Training PoEs by Constrastive Divergence

Contrastive divergence is a cancellation trick plus an approximation.

Let p0(x) = pD(x) be the true data distribution.

θ∗ = argmax
θ

log pθ(x) ⇐⇒ θ∗ = argmin
θ

KL(p0||pθ) (8)

Let ptθ(x) be the distribution of the data after t steps of MCMC

x ∼ ptθ(x) ⇐⇒ x ∼ MCMC(target = pθ, init = x0), x0 ∼ p0(x). (9)

Note that ptθ → pθ as t →∞, so p∞θ = pθ.

Idea: Run MCMC for a few iterations (t = 1), minimise

∆KL = KL(p0||p∞θ )− KL(ptθ||p∞θ ) (10)

Motivation: Pesky term from Zθ cancels.



Training PoEs by Constrastive Divergence

∆KL = KL(p0||p∞θ )︸ ︷︷ ︸
1

−KL(ptθ||p∞θ )︸ ︷︷ ︸
2

. (11)

Property 1: ptθ is always closer to p∞θ than p0 is to p∞θ .

KL(ptθ||p∞θ ) ≤ KL(p0||p∞θ ) =⇒ ∆KL ≥ 0 (12)

Property 2: If p0 is equal to p∞θ , so is ptθ

p∞θ = p0 =⇒ ptθ = p0,∆KL = 0 (13)

Property 3: Running t →∞ recovers maximum likelihood

∆KL→ KL(p0||p∞θ ), as t →∞. (14)

Intuition: ∆KL encourages 1 p∞θ close to p0 and 2 ptθ far from p0.
Since ptθ is starts at p0, 2 encourages the chain to not wander from p0.



Training PoEs by Contrastive Divergence

Cancellation: Let’s see how the Zθ term cancels

∇θ ∆KL = ∇θ
[
KL(p0||p∞θ )− KL(ptθ||p∞θ )

]
(15)

=

∫ [
����������dp0

dθ

δ

δp0
KL(p0||p∞θ ) +

dp∞θ
dθ

δ

δp∞θ
KL(p0||p∞θ )+

−
dptθ
dθ

δ

δptθ
KL(ptθ||p∞θ )−

dp∞θ
dθ

δ

δp∞θ
KL(ptθ||p∞θ )

]
dx (16)

dp∞θ
dθ

δ

δp∞θ
KL(p0||p∞θ ) = −p0

d log p∞θ
dθ

(17)

dp∞θ
dθ

δ

δp∞θ
KL(ptθ||p∞θ ) = −ptθ

d log p∞θ
dθ

(18)

Now we also have that

d log p∞θ
dθ

= −dEθ
dθ
− d logZθ

dθ
. (19)

The terms involving Zθ cancel!



Training PoEs by Contrastive Divergence

The cancellation leaves us with

∇θ ∆KL =

∫ [
p0

dEθ
dθ
− ptθ

dEθ
dθ
−

dptθ
dθ

δ

δptθ
KL(ptθ||p∞θ )

]
dx

The first term can be estimated by setting x equal to the data.

The second term can be estimated with simple Monte Carlo.

The last term is still tricky. Hinton [2002] ignores it!

∇θ ∆KL ≈ Ex∼p0(x)

[
dEθ(x)
dθ

]
− Ex∼ptθ(x)

[
dEθ(x)
dθ

]
. (20)

Empirically shows that this update also reduces the ignored term.



(Restricted) Boltzmann Machines

Boltzmann Machines [BM; Hinton et al., 1986], early example of EBMs.

Eθ(x ,h) =
∑

i∈X ,j∈H
xihjwij +

∑
i∈X

xiθi +
∑
i∈H

hiθi + (21)

+
∑

i<j∈X
xixjwij +

∑
i<j∈H

hihjwij .

where xi , hi ∈ {0, 1}. Smolensky [1986] introduced restricted BMs.

x1

x2

x3

h1

h2

Figure 2: Graphical model of a (restricted) Boltzmann Machine.



(Restricted) Boltzmann Machines

Zθ is analytic but computationally intractable, 2|X |+|H| states.

x1

x2

x3

h1

h2

Figure 3: Graphical model of a (restricted) Boltzmann Machine.

Freund and Haussler [1994]: RBMs are PoEs =⇒ still intractable.

Hinton [2002] introduced Contrastive Divergence (CD) to train RBMs.



(Restricted) Boltzmann Machines

∇θ ∆KL ≈ Ex∼p0(x)

[
dEθ(x)
dθ

]
− Ex∼ptθ(x)

[
dEθ(x)
dθ

]

x1

x2

x3

h1

h2

x0 ∼ p0(x)

Figure 4: Gibbs sampling in an RBM for contrastive divergence.



(Restricted) Boltzmann Machines

∇θ ∆KL ≈ Ex∼p0(x)

[
dEθ(x)
dθ

]
− Ex∼ptθ(x)

[
dEθ(x)
dθ

]

x1

x2

x3

h1

h2

x0 h1 ∼ p(h|x0)

Figure 5: Gibbs sampling in an RBM for contrastive divergence.

RBMs (generally PoEs): easy to sample p(x |h) and p(h|x).



(Restricted) Boltzmann Machines

∇θ ∆KL ≈ Ex∼p0(x)

[
dEθ(x)
dθ

]
− Ex∼ptθ(x)

[
dEθ(x)
dθ

]

x1

x2

x3

h1

h2

x1 ∼ p(x |h1) h1

Figure 6: Gibbs sampling in an RBM for contrastive divergence.

RBM (generally PoEs): easy to sample p(x |h) and p(h|x).



Some results

Figure 7: MNIST images (top) and their reconstrutions (bottom) by an RBM.

Figure 8: Energies of digits 4 and 6 under RBMs trained with digits 4 and 6.



Deep Boltzmann Machines

Deep BMs: Stack multiple RBMs [Salakhutdinov and Hinton, 2009].

Figure 9: Training and generated data using a DBM on MNIST.

Figure 10: Training and generated data using a DBM on NORB.



Summary so far

• EBMs are a model class with intractable log-likelihoods (due to Zθ).

• We can train EBMs by Contrastive Divergence

1 Set up a Markov Chain for ptθ.

2 Minimise ∆KL = KL(p0||p∞θ )− KL(ptθ||p∞θ ).

3 Cancellation of Zθ makes gradients tractable.

4 MCMC particularly easy for PoEs (conditional independence).

• Can we leverage recent developments in Deep Learning for EBMs?

• Are there alternatives for training EBMs?



Back to the Future



Modern Training – Contrastive Divergence I

We want to maximise the likelihood

pθ(x) =
exp(−Eθ(x))

Zθ
(22)

but we can’t compute the normalizing constant

Zθ =

∫
exp(−Eθ(x)) dx. (23)

However, it turns out that with a few tricks we can compute the
gradient of the log-likelihood

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ. (24)



Modern Training – Contrastive Divergence II

The first term ∇θEθ(x) is easy to compute with AD. But, the second
term ∇θ logZθ is intractable to compute exactly. However, it can be
approximated, with simple MC, as

∇θ logZθ = Ex∼pθ(x) [−∇θEθ(x)] ≈
1

N

N∑
n

−∇θEθ(xn), xn ∼ pθ(x).

(25)

Thus, we are taking gradient steps in the direction

∇θEθ(xtrain)−∇θEθ(xsample). (26)



Modern Training – Contrastive Divergence III

Figure 11: Taking steps in the direction of ∇θEθ(xtrain)−∇θEθ(xsample).
Adapted from [LeCun et al., 2006].



Modern Training – Contrastive Divergence IV

Alas, sampling from pθ(x) is highly non-trivial. Thus, we must resort to
further approximation. A common choice is to use Langevin MCMC

xt+1 ← xt +
ϵ2

2
∇x log pθ(x

t) + ϵzt , t = 0, 1, · · · ,T − 1, (27)

where zt ∼ N (0, 1) and x0 ∼ p(x).
Note: ∇x log pθ(x

t) = −∇xEθ(x)−�����∇x logZθ = −∇xEθ(x).

When ϵ→ 0 and T →∞, xT ∼ pθ(x).
However, we usually do not run the chain to convergence due to the high
computational cost.



Improved CD for EBMs I

But wait! The CD gradient doesn’t come from the LL, but rather

∆KL = KL(p0||p∞θ )− KL(ptθ||p∞θ ). (28)

Taking gradients w.r.t this objective results in

−∇θEθ(x) + Ex∼ptθ(x)
[∇θEθ(x)]−∇θp

t
θ(x)∇ptθ(x)

KL(ptθ||p0θ) (29)

where we have an additional KL term [Du et al., 2020].

CD training without the KL term doesn’t minimize any scalar loss
function [Sutskever and Tieleman, 2010].



Improved CD for EBMs II

Du et al. [2020] show that Adding the KL term is equivalent to adding a
KL loss

LKL = Eptθ(x)
[x]︸ ︷︷ ︸

1

+Eptθ(x)

[
log ptθ(x)

]︸ ︷︷ ︸
2

. (30)

Estimation of the KL loss is fairly involved.

1 requires differentiating through the MCMC sampling.

2 is estimated via a nearest-neighbours approximation.



Improved CD for EBMs III

Figure 12: Intuition for the KL loss – regularization which prevents bad
samples! Adapted from [Du et al., 2020].



Improved CD for EBMs IV

Figure 13: Samples from an EBM composed of individual conditional EBMs
trained on the CelebA-HQ dataset using Improved CD. Adapted from [Du
et al., 2020].



Modern Training – Score Matching

If f (x) and g(x) have equal first derivatives (a.k.a score functions), then
f (x) ≡ g(x)+ constant. When f (x) and g(x) are log PDFs, f (x) ≡ g(x).
Thus, Hyvärinen and Dayan [2005] propose to learn an EBM by
minimising

DF (pdata(x) ∥ pθ(x)) = Epdata(x)

[
1

2
∥∇x log pdata(x)−∇x log pθ(x)∥2

]
.

(31)

• The expectation can be approximated with a simple MC estimator.
• The term ∇x log pθ(x) = −∇x log Eθ(x).
• Unfortunately, the term ∇x log pdata(x) is intractable.

However, using integration by parts, we can rewrite this as

DF (pdata(x) ∥ pθ(x)) = Epdata(x)

[
1

2

d∑
i=1

(
∂Eθ(x)

∂xi

)2

+
∂2Eθ(x)

(∂xi )2

]
+ C.

(32)



Modern Training – Denoising Score Matching

Naive Score Matching has two potentially problematic requirements:

1 pdata(x) is continuously differentiable and finite everywhere, and
2 the computation of expensive second-order gradients.

Problem 1 can be solved by adding noise to each data point x̃ = x+ ϵ,
resulting in a noisy data distribution q(x̃) =

∫
q(x̃ | x)pdata(x)dx.

Vincent [2011] solve problem 2 by showing:

DF (q(x̃) ∥ pθ(x̃)) = Eq(x̃)

[
1

2
∥∇x log q(x̃)−∇x log pθ(x̃)∥22

]
= Eq(x,x̃)

[
1

2
∥∇x log q(x̃|x)−∇x log pθ(x̃)∥22

]
+ C,

(33)

thus avoiding any expensive second-order gradients.

New problems: Inconsistency. Trade-off between estimator variance
and noise magnitude.



Modern Training – Sliced Score Matching

Sliced Score Matching minimizes the sliced Fisher divergence

DSF (pdata||pθ) = Epdata(x)Ep(v)

[
1

2
(vT∇x log pdata(x)− vT∇x log pθ(x))

2

]
,

where p(v) denotes a projection dist. such that Ep(v)[vv
T] is pos. def.

As before, we can use the chain rule to avoid ∇x log pdata(x):

Epdata(x)Ep(v)

1

2

d∑
i=1

(
∂Eθ(x)

∂xi
vi

)2

+
d∑

i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj

 . (34)

However, unlike before, this form has a computational complexity of
O(d) rather than O(d2):

d∑
i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj =

d∑
i=1

∂

∂xi

( d∑
j=1

∂Eθ(x)

∂xj
vj

)
︸ ︷︷ ︸

:=f (x)

vi . (35)



Modern Training – Noise Contrastive Estimation

Gutmann and Hyvärinen [2010] proposed an alternative training method.

Define a known and tractable reference distribution pr (x).

Treat Zθ as a trainable variable.

log pθ = log p̃θ(x) + C . (36)

Draw x from pr (x) or from pD(x) (denoted y = 0, 1 respectively).

Use EBM to set up a classifier which distinguishes y = 0, 1

p(y = 0|x ,θ) = pr (x)
pθ(x) + pr (x)

, p(y = 1|x ,θ) = pθ(x)
pθ(x) + pr (x)

, (37)

where y = 0, 1 mean x drawn from pr (x) and from pD(x) respectively.



Modern Training – Noise Contrastive Estimation

Draw x1, . . . , xN ∼ pr (x) and xN+1, . . . , x2N ∼ pD(x). Minimise

LNCE =
N∑

n=1

log p(yn = 1|xn,θ) + log p(yN+n = 0|xN+n,θ), (38)

binary cross entropy loss for classifying samples.

Theorem (informal) Gutmann and Hyvärinen [2010]

If there exists θ∗ such that pθ∗ = pD , then in the limit N →∞ we
have θ → θ∗. Further, θ∗ is a unique global optimum.

Observation: Objective automatically takes care of Zθ

p(y = 0|x ,θ) = pr (x)
pθ(x) + pr (x)

, p(y = 1|x , θ) = pθ(x)
pθ(x) + pr (x)

, (39)

Intuition: Trainable variable C cannot go to neither −∞ nor ∞.



Conditional Noise Contrastive Estimation

Challenge with NCE: How to choose the reference distribution pr (x)?

Ceylan and Gutmann [2018] propose pr (x) =
∫
q(x |x ′)pD(x ′)dx ′ and

D(x , x ′) = p(y = 1|x , x ′, θ) =
q(x ′|x)pθ(x)

q(x ′|x)pθ(x) + q(x |x ′)pθ(x ′)
, (40)

where a typical choice for q is

q(x ′|x) = N (x ′; x , σ2I ). (41)

Observation: Equation (40) invariant to scaling pθ, and Zθ cancels.

Similarly to NCE, set up classification task and minimise

LCNCE = −
N∑

n=1

[
logD(xn, x ′

n) + log(1− D(x ′
n, xn))

]
(42)

where x1, · · · , xN ∼ pD(x) and x ′
1, · · · , x ′

N ∼ q(x ′|x).



Conditional Noise Contrastive Estimation

Figure 14: Data distribution, NCE samples and CNCE samples.

Intuition: Contrastive data closer to real data, so classification is more
challenging, training stays informative for longer.

By comparison, NCE classification is much easier. Classification task
solved quickly, at which point the EBM stops learning.



Relation between (C)NCE and CD

Yair and Michaeli [2020] view CD as a (C)NCE classification problem.

Figure 15: Illustration of CD viewed as a classification problem.

The CNCE parameter update rule can be written as

∆θCNCE =
N∑

n=1

(1− D(xn, x ′
n))

[
∇θ log pθ(xn)−∇θ log pθ(x ′

n)
]

Intuition:

1 Term ∇θ log pθ(xn) encourages high prob. near the data.
2 Term ∇θ log pθ(x ′

n) encourages low prob. at contrastive samples.
3 Term 1− D(xn, x ′

n) downweighs easily-classified pairs.
4 CNCE keeps D(xn, x ′

n) close to 1/2 for longer, compared to NCE.



Relation between (C)NCE and CD

Figure 16: Illustration of CD viewed as a classification problem.

∆θCNCE =
N∑

n=1

(1− D(xn, x ′
n))

[
∇θ log pθ(xn)−∇θ log pθ(x ′

n)
]

where x1, · · · , xN ∼ pD(x) and x ′
1, · · · , x ′

N ∼ pr (x).

Relation to CD: Let q(x ′|x) = qθ(x ′|x) be a reversible Markov Chain,
with stationary distribution pθ.

The optimal classifier becomes a random guess

D(xn, x ′
n) =

q(x ′|x)pθ(x)
q(x ′|x)pθ(x) + q(x |x ′)pθ(x ′)

=
1

2
. (43)



Relation between (C)NCE and CD

Figure 17: Illustration of CD viewed as a classification problem.

Under this model, the update rule becomes identical to CD

∆θCNCE =
1

2

N∑
n=1

[
∇θ log pθ(xn)−∇θ log pθ(x ′

n)
]
.

Important detail (stopping gradients)

Sample x ′
n ∼ qθ(x ′|x) depends on θ. It is necessary to stop gradi-

ents through qθ for equivalence between CD and CNCE. Stopping
gradients is equivalent to ignoring the intractable CD term.



Relation between (C)NCE and CD

Figure 18: Illustration of CNCE and CD training.



Relation between SM and CD

Hyvarinen [2007] relates SM with CD under a particular Markov Chain.

Suppose we generate samples using Langevin Dynamics

x ′ = x +
η2

2
∇x log pθ(x) + ηϵ, (44)

where η > 0 is a step size and ϵ is standard Gaussian noise. Starting

from the CD update rule, if we

1 Stop gradients flowing though pθ in equation (44),

2 Take the limit η → 0,

we recover the SM update rule.

Theorem (informal) Hyvarinen [2007]

Under an appropriate gradient stopping approximation, the update
rule of CD is equivalent to the update rule of SM in the limit η → 0.



EBMs in the Wild



Classifiers are EBMs? [Grathwohl et al., 2020b] I

Classifier:

pθ(y | x) =
exp (fθ(x)[y ])∑
y ′ exp (fθ(x)[y ′])

. (45)

Joint:

pθ(x, y) =
exp (fθ(x)[y ])

Zθ
. (46)

Marginal:

pθ(x) =
∑
y

pθ(x, y) =

∑
y exp (fθ(x)[y ])

Zθ
.

Energy:

Eθ(x) = − log
∑

y
exp(fθ(x)[y ]) . (47)

Figure 19: JEM.



Classifiers are EBMs? [Grathwohl et al., 2020b] II

Note:

pθ(y | x) =
pθ(x, y)

pθ(x)
=

exp (fθ(x)[y ])

��Zθ
��Zθ∑′

y exp (fθ(x)[y
′])
, (48)

as before.
For optimization, factorise the joint:

log pθ(x, y) = log pθ(x) + log pθ(y |x). (49)

log pθ(x) is optimised using persistent CD.

log pθ(y |x) is optimized using the standard CE loss.

JEM is a good classifier and generative model. The classifier is well
calibrated, and the generative model knows what it doesn’t know.



VAE-EBM Hybrids [Xiao et al., 2020] I

Product of a VAE and an EBM: hψ,θ(x, z) =
1

Zψ,θ
pθ(x, z)e

−Eψ(x).

Marginalizing out z gives

hψ,θ(x) =
1

Zψ,θ

∫
pθ(x, z)e

−Eψ(x)dz =
1

Zψ,θ
pθ(x)e

−Eψ(x). (50)

VAE Decoder Energy FunctionVAE Prior

Figure 20: VAEBM Computational Model



VAE-EBM Hybrids [Xiao et al., 2020] II

ψ, θ are trained by maximizing the marginal log-likelihood, in 2 steps:

log hψ,θ(x) = log pθ(x)− Eψ(x)− logZψ,θ (51)

≥ Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z))︸ ︷︷ ︸
Lvae(x,θ,ϕ)

−Eψ(x)− logZψ,θ︸ ︷︷ ︸
LEBM(x,ψ,θ)

.

Step 1: Train the VAE via Lvae.

Step 2: Fix the VAE, train the EBM via LEBM with CD.

Figure 21: CelebA HQ 256 – Qualitative Results



Energy-based OOD Detection [Liu et al., 2020]

CNN

Energy Function

Negative Energy

Frequency

threshold τ

in-distribution

out-of-distributionf (x;θ )

E(x; f )x

Figure 22: Energy-based OOD Detection.

Either apply the energy score to pre-trained NNs, or use it as an
additional loss during training.

Outperforms JEM for OOD detection.



Conclusions

EBMs are flexible class of models, which expand our modelling toolbox.

Several approaches for training EBMs, each with pros and cons:

1 Contrastive Divergence (CD).

2 Score Matching (SM), denoising SM, sliced SM.

3 Noise Contrastive Estimation (NCE) and Conditional NCE (CNCE).

Some of these are equivalent under certain conditions.

(Adapted from [Grathwohl et al., 2020a].)



Conclusions

Energy Based Models are great!

Many things that we didn’t get to talk about...

Other training methods:

• Minimizing KL differences – generalized CD and SM.

• Minimizing Stein’s discrepancy. E.g. LSD [Grathwohl et al., 2020c].

• Adversarial training

Other cool EBM papers:

• Your GAN is also a secret EBM [Che et al., 2020].

• Generalised Energy Based Models (GAN-EBM hybrids) [Arbel et al.,
2020].

And of course, many more details on CD, DM, NCE, their variants, their
connections, and more in [Song and Kingma, 2021].
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