World Models
Reading Group 2020

James Allingham and Gregor Simm
Machine Learning Group Cambridge

18.03.2020

What are World Models about?

» Approach in Reinforcement Learning (RL)
» Closely related to Model-Based RL (sample efficiency and planning)
> Partially Observable Markov Decision Processes (POMDP) (hidden information)

» (Some) Key Papers:

» David Ha and Jirgen Schmidhuber. “Recurrent world models facilitate policy
evolution”. In: Advances in Neural Information Processing Systems. 2018,
pp. 2450-2462

» Thomas Kipf, Elise van der Pol, and Max Welling. "Contrastive Learning of
Structured World Models”. In: arXiv:1911.12247 (2020)

» Alexander |. Cowen-Rivers and Jason Naradowsky. “"Emergent Communication with
World Models”. In: arXiv:2002.09604 (2020)

| 4

Machine Learning Group Cambridge James Allingham and Gregor Simm

2/50

Outline

1. Introduction to key concepts
» Markov Decision Process (MDP)
» Model-based vs Model-free RL
» Partially Observable MDPs
2. Main Paper: David Ha and Jiirgen Schmidhuber. “Recurrent world models
facilitate policy evolution”. In: Advances in Neural Information Processing
Systems. 2018, pp. 2450-2462
3. Related Work:

» Thomas Kipf, Elise van der Pol, and Max Welling. “Contrastive Learning of
Structured World Models”. In: arXiv:1911.12247 (2020)

» Alexander |. Cowen-Rivers and Jason Naradowsky. “"Emergent Communication with
World Models”. In: arXiv:2002.09604 (2020)

4. Qutlook and open questions

Machine Learning Group Cambridge James Allingham and Gregor Simm 3 /50

Reinforcement Learning — Useful Resources

- |
» Book by Richard S. Sutton and /7
Andrew G. Burto /“\ fl
» Chapter 1
» Chapter 2
» Chapter 3
» Chapter 8

Reinforcement

» UCL Lecture on RL by David Silver (+ Learning
videos) o ation
> Lecture 1 Richard S. Sutton and Andrew G. Barto
> Lecture 2
> Lecture 8

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. 1SBN: 978-0-262-03924-6

David Silver. UCL Course on Reinforcement Learning. http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html. 2015
Machine Learning Group Cambridge James Allingham and Gregor Simm 4 /50

Characteristics of Reinforcement Learning

What makes RL different from other machine learning paradigms?

» No supervision — there is only a reward signal from an environment
» Feedback is (often) delayed
» Sequential, non i.i.d. data

> Agent's actions affect subsequent data it receives

Machine Learning Group Cambridge James Allingham and Gregor Simm 5/ 50

Agent—Environment Interaction

At each step t the agent:

» gets observation O,
(e.g., current frame of Atari)

observation action

» sends action A; to the environment —
(e.g., push button)

» gets scalar reward Ry
(e.g., +1,0,-1,...)

» gets next observation Oy
(e.g., next frame)

The agent—environment interaction leads
to a trajectory (assuming Sy = O,):

SOv A07 R17 Sla A17 R27 527"427 R37 v

David Silver. UCL Course on Reinforcement Learning. http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html. 2015
Machine Learning Group Cambridge James Allingham and Gregor Simm 6 / 50

Information State - Markov Property

An Markov state contains all “useful” information from the past.

Definition: A state S; is Markov if and only if

P(StJrl | St) = P(St+1 | Sl, ceey St) (1)

» the future is independent of the past given the present.

» the state is a sufficient statistic of the past.

Machine Learning Group Cambridge James Allingham and Gregor Simm 7 /50

Markov Process

A Markov process is a memoryless random process, i.e., a sequence of random states
S1, So,... with the Markov property.

Definition: A Markov Process (or Markov Chain) is a tuple (S, P)
» S is a finite set of states.

> P is a state transition probability matrix, P(S;1 = ' | St = s)

Machine Learning Group Cambridge James Allingham and Gregor Simm 8 /50

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition:
A Markov Reward Process (MRP) is a tuple (S,P,R,)
» S is a finite set of states
» P is a state transition probability matrix, P(S;11 = s’ | Sy = s)
» R is a reward function, S — R
» ~ is a discount factor, v € [0, 1]

Machine Learning Group Cambridge James Allingham and Gregor Simm 9 /50

Reward and Return

RL is based on the Reward Hypothesis
= All goals can be described by the maximisation of expected cumulative reward.

Definition: The return G, is the total discounted reward from time-step .

Gy =Riy1 +YRij2+ - = Z V¥ Ryyrr (2)
k=0

» ~ for mathematical convenience, models uncertainty about future
P> ~ close to 0 leads to “myopic” evaluation

» ~ close to 1 leads to “far-sighted” evaluation

Machine Learning Group Cambridge James Allingham and Gregor Simm 10 / 50

Markov Decision Process

A Markov decision process (MDP) is an MRP with decisions. Its a process in which all
states are Markov.

Definition:
A Markov Process (or Markov Chain) is a tuple M = (S, A,P,R,~)

S is a finite set of states

A is a finite set of actions

>
>
» P is a state transition probability matrix, P(S;41 = §' | S = s, A, = a)
» R is a reward function, S x A —+ R

>

7 is a discount factor, v € [0, 1]

Machine Learning Group Cambridge James Allingham and Gregor Simm 11 /50

Agent — Policy

Definition: A policy 7 is a distribution over actions given states,

m(als) = P[A: = a|S; = s] (3)

» MDP policies depend on the current state (not the history)
» policies are stationary (time-independent): A; ~ 7(:|.S¢),Vt > 0
» given an MDP M = (S, A, P, R,v) and a policy 7:

» the state sequence S1, Ss, ... is a Markov process
» the state and reward sequence Sy, Ra, Sa, ... is a Markov reward process

Machine Learning Group Cambridge James Allingham and Gregor Simm

12 /50

Value Function

Definition: The state-value function v(s) of an MDP is the expected return

starting from state s
vr(8) = Ex[Gy | St = 9] (4)

Definition: The action-value function q,(s,a) of an MDP is the expected return
starting from state s, taking action a, and then following policy m

Gr(s,a) = E;[Gy | St = s, Ay = al (5)

Machine Learning Group Cambridge James Allingham and Gregor Simm 13 / 50

Bellman Expectation Equation

The value function v, (s) can be decomposed into two parts:
» immediate reward R

» discounted value of successor state yv(Si4+1)

=E,;[Gy | S = s]

=E;[Riy1 +YRiyo + 2Riys +- | Sy = 5]
= Eq|

= Eq|

0 N O

Rit1 + Gy | St = s
T Rt+1 + ’YUW(StJrl) | St - S]

~ o~ o~ o~
— — — —

O

The action-value function can similarly be decomposed.

Machine Learning Group Cambridge James Allingham and Gregor Simm 14 / 50

Optimal Value Function

Definition: The optimal state-value function v.(s) is the maximum state-value

function over all policies
v4(8) = max vz (s) (10)

Definition: The optimal action-value function q.(s,a) is the maximum action-
value function over all policies

g«(s,a) = mf}xqw(s,a) (11)

» The optimal value function specifies the best possible performance in the MDP.

» An MDP is “solved” when we know the optimal value function.

Machine Learning Group Cambridge James Allingham and Gregor Simm 15 / 50

Finding an Optimal Policy

Define a partial ordering over policies
a>7 if wve(s) > vr(s),Vs (12)

An optimal policy can be found by maximising over ¢.(s, a),

(als) 1 if a = argmax,c 4 g«(s,a) (13)
m«(als) =
0 otherwise

> If we know ¢.(s,a), we immediately have the optimal policy

» No closed form solution (in general) for solving the Bellman equations (for ¢(s, a),
for example)
> Many iterative solution methods exist:

» Value lteration
» Policy Iteration
» Q-learning

» Sarsa
»

Machine Learning Group Cambridge James Allingham and Gregor Simm 16 / 50

Model-Free RL Algorithm — Example

Q-learning (off-policy TD control) for estimating 7 ~ .

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, Q(S,a) — Q(S, 4)]
S« 5

until S is terminal

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. 1SBN: 978-0-262-03924-6

Machine Learning Group Cambridge James Allingham and Gregor Simm 17 / 50

Model-Based and Model-Free RL

» Model-Free RL

»> No model
» Learn value function (and/or policy) from experience

» Model-Based RL

» Fit a model from experience
» Plan value function (and/or policy) from model

Machine Learning Group Cambridge James Allingham and Gregor Simm 18 / 50

Model-Free vs Model-Based RL

observation

e
ol

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:

action

\
i/
> A

reward R,

MIT Press, 2018. 1SBN: 978-0-262-03924-6

Machine Learning Group Cambridge

action

reward R,

_‘h

James Allingham and Gregor Simm

19 / 50

Model-Based RL

value/policy
acting
planning
model experience
model
learning

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. 1SBN: 978-0-262-03924-6

Machine Learning Group Cambridge James Allingham and Gregor Simm 20 / 50

What is a Model?

» A model M, is a representation of an MDP (S, A, P, R,v) parametrized by
» Since S and A are known often written as M,, = (P,, R;)

> Advantages:

» allows planning ¢/
» reason about model uncertainty ¢/
» efficiently learn model by supervised learning methods ¢/

> Disadvantages:
» First learn a model, then construct a value function = two sources of error X

Machine Learning Group Cambridge James Allingham and Gregor Simm 21 /50

Model Learning

» Goal: estimate model M,, from experience {51, A1, Ry, ..., St}

» This is a supervised learning problem
S1, A1 — Ra, So
Sy, As — R3, S3

St—1,Ar—1 — Ry, St

» Learning s,a — 7 is a regression problem
» Learning s,a — s’ is a density estimation problem
» Pick loss function, e.g. mean-squared error, KL divergence, ...

» Find parameters n that minimizes empirical loss

Machine Learning Group Cambridge James Allingham and Gregor Simm 22 /50

Application

Given M,, = (P, Ry):
1. Planning: use favorite planning algorithm (value iteration, tree search,...)

2. Sample-Based Planning:

» Use model to generate samples, i.e., sample experience from model
» Apply model-free RL to samples (e.g., Q-learning)

Machine Learning Group Cambridge James Allingham and Gregor Simm 23 /50

Model-Based and Model-Free RL

» Model-Free RL

» No model

» Learn value function (and/or policy) from experience
» Model-Based RL

» Fit a model from experience
» Plan value function (and/or policy) from model

» Dyna
» Fit a model from real experience
» Learn and plan value function (and/or policy) from real and simulated experience

Machine Learning Group Cambridge James Allingham and Gregor Simm 24 /50

Model-Based RL
value/policy

acting

planning direct
RL

model experience

7

model
learning

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. 1SBN: 978-0-262-03924-6

Machine Learning Group Cambridge James Allingham and Gregor Simm 25 / 50

Model-Based RL Algorithm — Dyna-Q

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S A) +a[R+’ymaxaQ(S a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R,S" < Model(S, A)

Q(S,A) < Q(S, A) + a[R + ymax, Q(S',a) — Q(S, 4)]

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:

MIT Press, 2018. 1SBN: 978-0-262-03924-6

Machine Learning Group Cambridge James Allingham and Gregor Simm

26 / 50

Fully vs. Partially Observable Environments

Full observability: agent directly observes the environment state.

Oy =S¢ (14)

» The environment state S} is the environment's private representation.

» Markov Decision Process (MDP) and this is often assumed.

Partial observability: agent indirectly observes environment.

Or # 5¢ (15)

> Example: a robot with camera vision is not told its absolute position.
» This is a Partially Observable Markov Decision Process (POMDP).

= Agent must construct its own state representation S

Machine Learning Group Cambridge James Allingham and Gregor Simm 27 / 50

Partially Oberservable Markov Decision Process

A Partially Observable Markov decision process (POMDP) is an MDP with hidden
states. It is a hidden Markov model with actions.

Definition: A MOMDP is a tuple M = (S, A,O,P,R, Z,7)
» S is a finite set of states
A is a finite set of actions
O is a finite set of observations
P is a state transition probability matrix, P(Sy11 = s | St = s, A; = a)
R is a reward function, R = E[Ry1 | St = s, A¢ = d]
Z is an observation function, Z =P[O;y1 =0 | Sy = ', Ay = a]

vVVvVvYvYyVvVvyy

7 is a discount factor, v € [0, 1]

Machine Learning Group Cambridge James Allingham and Gregor Simm 28 / 50

History and State

» The history is the sequence of observations, actions, and rewards:
H; = Og, Ao, R1,01,A1,R2,02, A2, R3, . .. (16)
» Then, the state depends on the history
Sy = f(Hy) (17)
The function f has to fulfill the Markov property:

f(h) = f(h/) = Pr{0t+1 = 0|Ht = h,At = (l} = Pr{0t+1 = O‘Ht = h/, At = CL},
(18)

Machine Learning Group Cambridge James Allingham and Gregor Simm 29 / 50

History and State (Il)

» \We want our states to be compact as well as Markov (not simply a
concatenation).

» Idea: Recursive update that computes Sy from S;, Ay and Opy1:

Si1 = u(St, Ar, Ory1) (19)

with the first state Sy given.

Machine Learning Group Cambridge James Allingham and Gregor Simm 30 /50

World Models [4]

Inspired by cognitive neuroscience.

Train a generative model, the world
model, in an unsupervised manner.

Train a small controller using
evolutionary strategies [6].

Controller can be trained on
hallucinated environments.

Machine Learning Group Cambridge

One way of understanding the predic-
tive model inside our brains is that it
might not simply be about predicting
the future in general, but predicting
future sensory data given our current
motor actions. [4]

James Allingham and Gregor Simm

31 /50

Modeling Space - V(ision) Model

Original Observed Frame

Encoder @—> Decoder

Reconstructed Frame

» Train a VAE [7] to reconstruct frames from video game environments.

» Compresses each observation frame into a latent representation z.

Machine Learning Group Cambridge

James Allingham and Gregor Simm

32 /50

Modeling Time - M(emory) Model

z‘ zlﬂ

) CJ

A)

_,D@ | »Q .,

aH a‘ T

Zm Z,

lH

t+1

» Train an MDN-RNN [3] to predict future latent states.

» Compresses past latent spaces into a hidden state h i.e. learn P(zyy1|ay, ¢, ht).

» Can adjust the temperature 7 to control model uncertainty.

Machine Learning Group Cambridge James Allingham and Gregor Simm

33 /50

Controlling the Agent - C Model

ay = WC[Ztht] + bc

» Intentionally kept as simple as
possible.

» Trained to maximise the expected
cumulative reward during a rollout.

www.tasteofhome.com/recipes/
cherry-chocolate-layer-cake/

Machine Learning Group Cambridge James Allingham and Gregor Simm 34 /50

www.tasteofhome.com/recipes/cherry-chocolate-layer-cake/
www.tasteofhome.com/recipes/cherry-chocolate-layer-cake/

Putting Everything Together

def rollout(controller):

LI

LI

env,
global variables

rnn, vae are

obs = env.reset()

h = rnn.initial_state()
done = False
cumulative_reward = 0
while not done:

z
a

vae.encode(obs)
controller.action([z, h])

obs, reward, done = env.step(a)

cumulative_reward += reward

h = rnn.forward([a, z, h])
return cumulative_reward

Machine Learning Group Cambridge

environment

observation

world model

action
VAE (V)
IR]
v
C
MDN-RNN (M)

h

action

James Allingham and Gregor Simm

35 /50

Rolling Out

Ho

Hs

As

Machine Learning Group Cambridge James Allingham and Gregor Simm 36 / 50

CarRacing-v0

1. Collect 10,000 rollouts from a random
policy.

2. Train V to encode frames into z € R3?.

3. Train M to model P(ziy1|as, z¢, hy).

4. Maximise expected reward by optimizing C
with CMA [6].

Machine Learning Group Cambridge James Allingham and Gregor Simm 37 /50

CarRacing-v0

MODEL | PARAM COUNT
\% 4,348,547

M 422,368

C 867

Machine Learning Group Cambridge James Allingham and Gregor Simm 37 /50

CarRacing-v0

METHOD AVG. SCORE
DQN (PRIEUR, 2017) 343 + 18
A3C (CONTINUOUS) (JANG ET AL., 2017) 591 £ 45
A3C (DISCRETE) (KHAN & ELIBOL, 2016) 652 £ 10
CEOBILLIONAIRE (GYM LEADERBOARD) 838 £ 11

V MODEL 632 4+ 251
V MODEL WITH HIDDEN LAYER 788 + 141
FuLL WORLD MODEL 906 + 21

Machine Learning Group Cambridge James Allingham and Gregor Simm 37 /50

DoomTakeCover-vO

1. Collect 10,000 rollouts from a random
policy.

2. Train V to encode frames into z € R4,
Encode all frames from the rollouts in step
1 into z.

3. Train M to model. P(zyy1,div1|a, zt, he)

4. Optimize C to maximise expected survival
time, in a hallucinated environment.

5. Use policy learned by C in the real
environment.

Machine Learning Group Cambridge James Allingham and Gregor Simm 38 /50

DoomTakeCover-vO

MODEL | PARAM COUNT
\% 4,446,915

M 1,678,785

C 1,088

Machine Learning Group Cambridge James Allingham and Gregor Simm 38 /50

DoomTakeCover-vO

» Agent learns to survive for 900 time steps
in the hallucinated environment.

» |t also learns various rules of the
environment such as:

> How actions (e.g. left and right)
cause the agent to move.

» That the agent cannot move past walls.

» How to keep track of projectiles.

» That the game should end if a projectile
hits the agent.

Machine Learning Group Cambridge James Allingham and Gregor Simm 38 /50

DoomTakeCover-vO

» Agent learns to survive for 1100 time
steps in the real environment.

» The real environment is more difficult than
the hallucinated environment because of
it's stochasticity.

» The agent can sometimes learn to cheat in
the hallucinated environment.

» The level of difficulty can be controlled
with the temperature parameter of the
MDN-RNN.

Machine Learning Group Cambridge James Allingham and Gregor Simm 38 /50

DoomTakeCover-vO

TEMPERATURE T

VIRTUAL SCORE

ACTUAL SCORE

0.10 2086 &+ 140 193 £ 58
0.50 2060 £ 277 196 &£ 50
1.00 1145 £ 690 868 £ 511
1.15 918 £+ 546 1092 £+ 556
1.30 732 £ 269 753 £ 139
RANDOM POLICY N/A 210 + 108
GYM LEADER N/A 820 + 58

Machine Learning Group Cambridge

James Allingham and Gregor Simm

38 /50

CartPole

1. Initialize M and C randomly.

2. Collect N rollouts in the real
environment.

3. Train M to model
P($t+1,dt+1,7't+1,at+1’at,$t,ht)-

4. Optimize C to maximise expected reward
in the hallucinated environment.

5. Go back to step 2 if task has not been
solved.

Machine Learning Group Cambridge James Allingham and Gregor Simm 39 /50

Contrastive Learning of Structured World Models [4]

» The world model of Ha and Schmidhuber relies on the VAE framework to learn
representations of the environment.

» However, this representation is not structured: it is not explicitly built up from
representations of objects, relationships, and hierarchies.

» Additionally, training a generative model on pixels requires a trade-off between
reconstruction loss and constraints on the latent variables.

» Contrastively-trained Structured World Models (C-SWMs) attempt to address
these issues.

Machine Learning Group Cambridge James Allingham and Gregor Simm 40 / 50

Contrastive Learning of Structured World Models [4]

Suppose our goal is simply to learn a representation of the world:
» Given an experience buffer {(s;, as, s141)} /-1,

» Learn latent representations z; that discards any information that is not required
to predict z;41 given ay.

» i.e. learn an encoder E : S — Z and a transition model T': Z x A — Z.

Machine Learning Group Cambridge James Allingham and Gregor Simm 40 / 50

Contrastive Learning of Structured World Models [4]

We can use an energy-based hinge loss function:

L=d(z+ T (z,at), ze41) + max(0,y — d(Zt, ze41))

where d(x,y) is the squared euclidean distance, z; = E(s;), 2, = E($;) for §; sampled
at random from the experience buffer, and ~ is the margin hyper-parameter.

The hinge is placed only on the corrupted term as this was found to work better in
practice.

Machine Learning Group Cambridge James Allingham and Gregor Simm 40 / 50

Contrastive Learning of Structured World Models [4]

However, we want to learn a structured model for the world where:
> ZZZl><ZQ><~-><ZK, and
> A=A x Ay x -+ x Ag.

where z; is the representation for object 4 in the environment, and a; is an action
applied to it.

P ensures that objects are represented independently,
» allows for parameter sharing, and

P serves as a strong inductive bias!

Machine Learning Group Cambridge James Allingham and Gregor Simm 41 /50

Contrastive Learning of Structured World Models [4]

-0

[} GNN | .

0 = ° — —

B (| I c =

] | i

] L] |

Object Object Transition Contrastive

K extractor M encoder ! model ¢ Az loss “ii

Machine Learning Group Cambridge James Allingham and Gregor Simm 41 / 50

Contrastive Learning of Structured World Models [4]

| GNN]]

N — o] -

B || H L =

|] |

| oo | i

5, Object m, Object 2, Transition 2+ A 2, Contrastive 2
extractor encoder model loss

» Encoder split into two parts a CNN Eey and an MLP Egpc:
> mf = [Eext(51)]k
> 2F = Eenc(mF).

» Only one feature map per object in this work.

Machine Learning Group Cambridge James Allingham and Gregor Simm 41 / 50

Contrastive Learning of Structured World Models [4]

4%&

Object Object

extractor

> Az = T(Ztv at) GNN({(Zt 7af) i{zl
> GNN consists of node and edge update functions implemented as MLPs:

» e(lj)
> Az =

(E)

- fnode([zt ’ at ’ Zi;éj 61(617])])

encoder

).

BEEEN

z

GNN

Transition
model

» This work only applies 1 round of message passing.

Machine Learning Group Cambridge

z

+

BEEER
o
BEEN

Az Contrastive
t loss

James Allingham and Gregor Simm

41/ 50

Contrastive Learning of Structured World Models [4]

K

s Object
extractor
where:
H=

Machine Learning Group Cambridge

T

k:l

BECEN

zt +T* (z¢,a4), zfﬂ

GNN
]

H=

Transition

model

L= H+ max(0,y — H)

K

SWE

k=1

PRs A 2, Contrastive

BEEEN
o
BEEEN

™
—_

loss s

Zt) Zt+1

James Allingham and Gregor Simm

41 /50

Contrastive Learning of Structured World Models [4]

o1 %/ /e e\
od TN

(b) Learned abstract state transition graph of the yel-

(a) Discovered object masks in a scene from the 3D low cube (left) and the green square (right), while
cubes (top) and 2D shapes (bottom) environments. keeping all other object positions fixed at test time.

» Quantitative results for these environments and some Atari games:

» Stronger performance than VAE-based world models.
» Ablation study for factored states, GNN, and contrastive loss.

» Limitations:

» Instance disambiguation.
» Stochasticity.
» Markov assumption.

Machine Learning Group Cambridge James Allingham and Gregor Simm 41 /50

Emergent Communication with World Models [1]

“Hey, look out! You're heading for that walll”...

Figure 2: The partially-observable worlds
that the agents interact in. The speaker (un-

Figure 1: A Language-Conditional World seen? is able to view the t}ntire map, \yhereas
Model, adapted from Scott McCloud’s Un- tl}e llsFener (blue) only views a pixel in each
derstanding Comics [10] and World Mod- direction. At the start of each game, a flag
els [11]. Here the cyclist has limited ob- (green) is randomly placed in one of two
servability of the world around him (blind- paths. Bqth the.speake_r and listener receive
folded), and conceptualizes danger by inter- a reward ff the listener is abl; to find the flag
preting language within the context of his by choosing the correct corridor.

world model.

Machine Learning Group Cambridge James Allingham and Gregor Simm 42 / 50

EC Setting

» Speaker:

» Full observation O;
» Sends messages m; based on O; to listener

» Listener:

» Has partial observation o
P Receives messages m; from speaker
» Acts in environment through actions a;

» Both try to achieve the same goal

Machine Learning Group Cambridge James Allingham and Gregor Simm 43 /50

Challenges and Desiderata

v

my; should not be a command
» separate m; from listeners decision making
> message should be grounded: should relate to what the speaker is seeing

> listener should update belief of state s; based on my

v

listener should “visualize” the world (dreaming)

Language World Models (LWM): WM for partially observable worlds which are
trained to predict future states based on messages.

Machine Learning Group Cambridge James Allingham and Gregor Simm 44 / 50

Speaker — Concept Clustering

Algorithm 2 Concept Clustering

1: procedure CC(0) > Algorithm for calculating Concept Clustering
2 Psort < 0 > pass any decoder function f°I™.
3 MSE <0 > pass the senders message network excl. softmax layer 7,
4 for o in BatchObs do
5 Dsoft = Softmazx” (1, (0) + €), € ~ Gumbel (0, 1)
6: my = OneHot(argmax(psoft)) — StopGradient(psoft) + Psoft
7 6= folm(my) > Decode message into an observation
8 Psot += Bustsize

atchSize . N
9: MSE +=3}% % > Where the max error can be 1.0

10: end for
11: return CC = Y P, 10g(Ds05:) + MSE
12: end procedure > The entropy term aids GS sample exploration

Machine Learning Group Cambridge

James Allingham and Gregor Simm

45 / 50

Listener

Beliet
inference

—

g*(f |2 message) .

e
Vi

ptio") gz AAE-Seq

Pzt 19

Machine Learning Group Cambridge James Allingham and Gregor Simm 46 / 50

Interpret Message by Inspecting Listener's Belief

Flag on the left
side. the right corridor.

(human
visual evaluation

sample persistent message code

Message Message
token 1 token 0

Machine Learning Group Cambridge

Flag at the bottom of Flag in the middle

of the right corridor.

Flat at the
bottom left.

Message Message
token 1 token 0

James Allingham and Gregor Simm

47 / 50

Conclusions

> Key Paper: World Models
P> Extensions:

» Structured World Models: WM which learn structured representations of the
environment.

» Language World Models: WM which predict the future based on messages from a
speaker.

» More reading:

» Danijar Hafner, Timothy Lillicrap, lan Fischer, Ruben Villegas, David Ha,

Honglak Lee, and James Davidson. “Learning latent dynamics for planning from
pixels". In: arXiv preprint arXiv:1811.04551 (2018) — shows that learning in
hallucinated environments can be very sample efficient.

» Daniel Freeman, David Ha, and Luke Metz. “Learning to Predict Without Looking
Ahead: World Models Without Forward Prediction”. In: Advances in Neural
Information Processing Systems. 2019, pp. 5380-5391 — another application of
World Models to partially observed environments. Very cool web version of the
paper: https://learningtopredict.github.io/.

» Marwin H. S. Segler. “World Programs for Model-Based Learning and Planning in
Compositional State and Action Spaces”. In: arXiv:1912.13007 (2019) — World
Programs: agent has to learn the allowed actions as well.

Machine Learning Group Cambridge James Allingham and Gregor Simm 48 / 50

https://learningtopredict.github.io/

Questions?

Thank you for your attention!

Machine Learning Group Cambridge James Allingham and Gregor Simm 49 / 50

References

[1]
2]

(3]
[4]
(5]
[6]
[7]
(8]
[9]

Alexander |. Cowen-Rivers and Jason Naradowsky. “Emergent Communication with World Models". In:
arXiv:2002.09604 (2020).

Daniel Freeman, David Ha, and Luke Metz. “Learning to Predict Without Looking Ahead: World
Models Without Forward Prediction”. In: Advances in Neural Information Processing Systems. 2019,
pp. 5380-5391.

David Ha and Douglas Eck. “A neural representation of sketch drawings". In: arXiv preprint
arXiv:1704.03477 (2017).

David Ha and Jirgen Schmidhuber. “Recurrent world models facilitate policy evolution”. In: Advances
in Neural Information Processing Systems. 2018, pp. 2450-2462.

Danijar Hafner, Timothy Lillicrap, lan Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. “Learning latent dynamics for planning from pixels”. In: arXiv preprint
arXiv:1811.04551 (2018).

Nikolaus Hansen. “The CMA evolution strategy: A tutorial”. In: arXiv preprint arXiv:1604.00772 (2016).

Diederik P Kingma and Max Welling. "Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

Thomas Kipf, Elise van der Pol, and Max Welling. “Contrastive Learning of Structured World Models".
In: arXiv:1911.12247 (2020).

Marwin H. S. Segler. “World Programs for Model-Based Learning and Planning in Compositional State
and Action Spaces”. In: arXiv:1912.13007 (2019).

[10] David Silver. UCL Course on Reinforcement Learning.
http://wwwO.cs.ucl.ac.uk/staff/d.silver /web/Teaching.html. 2015.
[11] Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction.
second edition. Cambridge, Massachusetts: MIT Press, 2018. 1SBN: 978-0- 262 03924-6.
Machine Learning Group Cambridge James Allingham and Gregor Simm

50 / 50

