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@ Something for everyone.



Goals

@ Something for everyone.
@ Give a taste of techniques used in SOTA vision models.
» Come up with your own methods!
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Goals

@ Something for everyone.
@ Give a taste of techniques used in SOTA vision models.
» Come up with your own methods!

@ Highlight some best practises for CNN models.
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LeNet

Introduced by LeCun et al. (1998),
makes use of:

@ (5x5) Convolutions

o (Average) Pooling
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Convolution Operation
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Convolution Operation
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Convolution Layer
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Hierarchical Features
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(Lee et al., 2009)
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Hierarchical Features
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Hierarchical Features
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(Average) Pooling Layer
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(Average) Pooling Layer
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Receptive Fields

3x3 CoNv
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Receptive Fields
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Receptive Fields

3x3 CoNnv — 3x3 CONV
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Receptive Fields

3x3 CoNV — 2x2 PoOOL
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Introduced by Krizhevsky et al. (2012), makes use of:

@ Grouped convolutions (various @ ReLU non-linearity

sizes) @ Local response norm

@ (Overlapping) Max pooling e Dropout
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AlexNet

Learned Features
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(Max) Pooling Layer
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RelLU Activation Layer
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Dropout Layer
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VGG

INPUT
x2
X2
Introduced by Simonyan and
Zisserman (2014). 3
%3
@ Only 3x3 Convolutions
. MaxPoorL2D
@ Only 2x2 Max Pooling
DENSE 4096
X2
OurpuT
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Inception V1
AKA GooglLeNet

INPUT

(1x1 Conv2D) (3x3 Conv2D) (5x5 Conv2D) (3x3 MaxPooL2D)

(RELU)

OuTpPUT

Introduced by Szegedy et al. (2014).
@ Go a bit wider rather than deeper (still 27 layers).
» With Inception Modules (9 of them).

@ Convolutions of different sizes make a come back!
@ Including 1x1 Convolutions??? (Lin et al., 2013)
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Inception V1
AKA GooglLeNet
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Inception V1

Auxiliary Classifier — Vanishing Gradients

INCEPTION MODULE
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Inception V2

Introduced by Szegedy et al. (2015).
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Inception V3

Also introduced by Szegedy et al. (2015).

@ 7x7 Convolutions make a comeback!

@ Various training improvements.

» Batch normalisation.
> Label smoothing.
» RMSProp.
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ResNet

Introduced by He et al. (2015).
@ Residual connections.
» Bye-bye vanishing gradients.
» Much deeper (100s of layers)!
o Fully-Convolutional
» Dense — global average
pooling.
> Less over-fitting.
» Heat-maps!
@ Only 3x3 convolutions.

o Little max pooling.
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ResNet

What the residual connection does

(Li et al., 2017)
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ResNet

Heatmaps

(Adapted from FastAl's Practical Deep Learning for Coders 2017)
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ResNet

Heatmaps

/

(Adapted from FastAl's Practical Deep Learning for Coders 2017)
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DenseNet

Introduced by Huang et al. (2016).
@ Dense connections.
e 121 layers (but more like 10).

@ 1x1 convolutions as bottleneck
layers before expensive 3x3
convolutions.
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DenseNet

What the skip connection does

(Li et al., 2017)
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SqueezeNet

Introduced by landola et al. (2016).

@ 3 x3 — 1x 1 convolutions. InpUT

1x1 Conv2D

Reduce number of channels.

°
@ Downsample later in the net.
@ Fire module

z S
(1x1 Conv2D) (3x3 Conv2D)

» Squeeze and Expansion layers.
Same accuracy as AlexNet but
50x fewer weights.

> No dense layers. OUJPUT
» < 0.5MB model size.

RELU RELU
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MobileNet

Introduced by Howard et al. (2017).

@ Depthwise separable
convolutions.

o Very flexible family of nets.

@ Also fully-convolutional.
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What | didn't talk about...

@ Anything other than image classification!
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What | didn't talk about...

@ Anything other than image classification!
» But don't worry, a lot of this applies to other tasks.
@ YOLO for Object Detection (Redmon et al., 2015).
» Very similar structure to VGG but with auxiliary outputs.

e 100 Layers Tiramisu and UNet for Image Segmentation (Jégou
et al., 2016; Ronneberger et al., 2015).

» Based on DenseNets and ResNets.

@ Deconvolutions, Upsampling, GANs, etc. for Image Synthesis and
Super Resolution.

» e.g. ESRGAN (Wang et al., 2018).
@ Convolutions for language models!
» e.g. Conv Seq2Seq (Gehring et al., 2017).

Thank Youl
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