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Goals

Something for everyone.

Give a taste of techniques used in SOTA vision models.
I Come up with your own methods!

Highlight some best practises for CNN models.
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LeNet

Introduced by LeCun et al. (1998),
makes use of:

(5×5) Convolutions

(Average) Pooling

Input

Conv2D

TanH

AvgPool2D

Conv2D

TanH

AvgPool2D

Dense

TanH

Dense

Softmax

Output
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Convolution Operation
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0 1 0 0 0 1 0
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1 0 0

0 1 0

0 0 1
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2 0 1 0 1

0 3 0 1 0
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Convolution Operation

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0
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Convolution Layer

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1



Conv2D

1 0 1 0 2

0 1 0 3 0

0 0 3 0 0

0 3 0 1 0

2 0 1 0 1

,

2 0 1 0 1

0 3 0 1 0

0 0 3 0 0

0 1 0 3 0
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,...
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Hierarchical Features

(Lee et al., 2009)
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(Average) Pooling Layer

9 1 0 2

3 3 4 2

9 5 0 2

9 9 2 0


AvgPool2D

4 2 2

5 3 2

6 4 1
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Receptive Fields

3×3 Conv

9 1 0 2 5

3 3 4 2 0

9 5 0 2 0

9 9 2 6 1

5 4 2 9 2

4 2 0

6 1 0

9 5 5
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Receptive Fields

4×4 Conv
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Receptive Fields

3×3 Conv → 3×3 Conv

9 1 0 2 5

3 3 4 2 0

9 5 0 2 0

9 9 2 6 1

5 4 2 9 2

1 2 3

4 5 6

7 8 9

9
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Receptive Fields

3×3 Conv → 2×2 Pool

9 1 0 2 5

3 3 4 2 0

9 5 0 2 0

9 9 2 6 1

5 4 2 9 2

1 2 3

4 5 6

7 8 9

9 6

8 9
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AlexNet

Introduced by Krizhevsky et al. (2012), makes use of:

Grouped convolutions (various
sizes)

(Overlapping) Max pooling

ReLU non-linearity

Local response norm

Dropout
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AlexNet
Learned Features
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(Max) Pooling Layer

9 1 0 2

3 3 4 2

9 5 0 2

9 9 2 0


MaxPool2D

9 4 4

9 5 4

9 9 2
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ReLU Activation Layer

2 91 0 2

1 3 94 92

4 5 0 2

92 98 0 93


ReLU

2 0 0 2

1 3 0 0

4 5 0 2

0 0 0 0
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Dropout Layer

7 2 2 1

3 1 8 4

2 6 4 2

3 3 5 1


Dropout

0 4 4 2

6 0 0 0

4 0 8 0

6 6 0 0
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VGG

Introduced by Simonyan and
Zisserman (2014).

Only 3×3 Convolutions

Only 2×2 Max Pooling

Input

Conv2D

ReLU

MaxPool2D

Conv2D

ReLU

MaxPool2D

Dense 4096

ReLU

Dense 1000

Softmax

Output

×2

×2

×3

×3

×2
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Inception V1
AKA GoogLeNet

Input

1×1 Conv2D

ReLU

3×3 Conv2D

ReLU

5×5 Conv2D

ReLU

3×3 MaxPool2D

Concat

Output

Introduced by Szegedy et al. (2014).

Go a bit wider rather than deeper (still 27 layers).
I With Inception Modules (9 of them).

Convolutions of different sizes make a come back!

Including 1×1 Convolutions??? (Lin et al., 2013)
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Inception V1
AKA GoogLeNet

Input

1×1 Conv2D

1×1 Conv2D

3×3 Conv2D

1×1 Conv2D

5×5 Conv2D

3×3 MaxPool2D

1×1 Conv2D

Concat

Output
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Inception V1
Auxiliary Classifier – Vanishing Gradients

...

Inception Module

Inception Module

Inception Module

Inception Module

MaxPool2D

Conv2D

Dense

Dense

Softmax

...

Aux Output

Output
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Inception V2

Introduced by Szegedy et al. (2015).
Input

1×1 Conv2D

1×1 Conv2D

3×3 Conv2D

1×1 Conv2D

3×3 Conv2D

3×3 Conv2D

3×3 MaxPool2D

1×1 Conv2D

Concat

Output

James Allingham Convolutional Models 26 August 2019 18 / 33



Inception V2

Input

1×1 Conv2D

1×1 Conv2D

1×n Conv2D

n×1 Conv2D

1×1 Conv2D

1×n Conv2D

n×1 Conv2D

1×n Conv2D

n×1 Conv2D

3×3 MaxPool2D

1×1 Conv2D

Concat

Output
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Inception V2

Input

1×1 Conv2D

1×1 Conv2D

1×3 3×1

1×1 Conv2D

3×3 Conv2D

1×3 3×1

3×3 MaxPool2D

1×1 Conv2D

Concat

Output
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Inception V3

Also introduced by Szegedy et al. (2015).

7×7 Convolutions make a comeback!

Various training improvements.
I Batch normalisation.
I Label smoothing.
I RMSProp.
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ResNet

Introduced by He et al. (2015).

Residual connections.
I Bye-bye vanishing gradients.
I Much deeper (100s of layers)!

Fully-Convolutional
I Dense → global average

pooling.
I Less over-fitting.
I Heat-maps!

Only 3×3 convolutions.

Little max pooling.

Input

Conv2D

BatchNorm

ReLU

Conv2D

BatchNorm

ReLU

+

Output
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ResNet
What the residual connection does

(Li et al., 2017)
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ResNet
Heatmaps

(Adapted from FastAI’s Practical Deep Learning for Coders 2017)
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DenseNet

Introduced by Huang et al. (2016).

Dense connections.

121 layers (but more like 10).

1×1 convolutions as bottleneck
layers before expensive 3×3
convolutions.

Input

Conv2D

Concat

Conv2D

Concat

Conv2D

Concat

Output
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DenseNet
What the skip connection does

(Li et al., 2017)
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SqueezeNet

Introduced by Iandola et al. (2016).

3 ×3 → 1× 1 convolutions.

Reduce number of channels.

Downsample later in the net.

Fire module
I Squeeze and Expansion layers.

Same accuracy as AlexNet but
50× fewer weights.

I No dense layers.
I < 0.5MB model size.

Input

1×1 Conv2D

ReLU

1×1 Conv2D 3×3 Conv2D

ReLU ReLU

Concat

Output
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MobileNet

Introduced by Howard et al. (2017).

Depthwise separable
convolutions.

Very flexible family of nets.

Also fully-convolutional.

Input

1×1 Conv2D

3×3 Conv2D

1×1 Conv2D

Output
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What I didn’t talk about...

Anything other than image classification!

I But don’t worry, a lot of this applies to other tasks.

YOLO for Object Detection (Redmon et al., 2015).
I Very similar structure to VGG but with auxiliary outputs.

100 Layers Tiramisu and UNet for Image Segmentation (Jégou
et al., 2016; Ronneberger et al., 2015).

I Based on DenseNets and ResNets.

Deconvolutions, Upsampling, GANs, etc. for Image Synthesis and
Super Resolution.

I e.g. ESRGAN (Wang et al., 2018).

Convolutions for language models!
I e.g. Conv Seq2Seq (Gehring et al., 2017).
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What I didn’t talk about...

Anything other than image classification!
I But don’t worry, a lot of this applies to other tasks.

YOLO for Object Detection (Redmon et al., 2015).
I Very similar structure to VGG but with auxiliary outputs.

100 Layers Tiramisu and UNet for Image Segmentation (Jégou
et al., 2016; Ronneberger et al., 2015).

I Based on DenseNets and ResNets.

Deconvolutions, Upsampling, GANs, etc. for Image Synthesis and
Super Resolution.

I e.g. ESRGAN (Wang et al., 2018).

Convolutions for language models!
I e.g. Conv Seq2Seq (Gehring et al., 2017).

Thank You!
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Parameter Sharing

Convolution Layer

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3

Fully-connected Layer

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3
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