Sparse MoEs meet Efficient Ensembles

A recipe for BIG models with low compute cost and strong robustness in the world of fine-tuning

James Urquhart Allingham

Machine Learning Efficiency Workshop @ DLI 2022

26 August 2022

Sparse MoEs meet Efficient Ensembles

James Urquhart Allingham^{1,*}

Florian Wenzel 2,†

Zelda E Mariet, Basil Mustafa

Joan Puigcerver, Neil Houlsby

Ghassen Jerfel 3,†

Vincent Fortuin^{1,4,*}

Balaji Lakshminarayanan, Jasper Snoek Dustin Tran, Carlos Riquelme, Rodolphe Jenatton Google Research, Brain Team; ¹University of Cambridge; ²no affiliation; ³Waymo; ⁴ETH Zürich

jua23@cam.ac.uk

fln.wenzel@gmail.com

{*zmariet*, *basilm*}@google.com

{*jpuigcerver*, *neilhoulsby*}@google.com

ghassen@google.com

vbf21@cam.ac.uk

{balajiln,jsnoek}@google.com

{trandustin, rikel, rjenatton}@google.com

Self Driving Cars A brief case study in safety critical applications on the edge

The story so far...

- There is a need for models which have some notion of uncertainty and robustness to dataset shift.
- Many safety critical applications are at the edge.
- Larger models have been shown to be more robust and uncertainty aware¹.
- This poses a problem since we want both efficiency and uncertainty + robustness.
- Additionally, many practitioners can't train such models.
- Spoiler Alert!
- Our solution is the combination of sparse MoEs and efficient ensembles.

¹"Plex: Towards Reliability using Pretrained Large Model Extensions", Tran, et al. 2022 4

Sparse Mixtures of Experts (Sparse MoEs)

Bigger models without bigger compute

Ensembles of Neural Networks

Easy robustness and uncertainty awareness

Sparse MoEs vs Ensembles

Sparse MoEs

Single prediction

Per-example adaptivity

Combination at activation level

Compute \approx standard NN

???

Ensembles

Multiple predictions

Static combination

Combination at prediction level

Compute \gg standard NN

Robust to distribution shift, well-calibrated uncertainty, good OOD detection

Efficient Ensemble of Experts (E³)

Sparse MoEs meet Efficient Ensembles

Highlighted Results (lower is better)

Conclusion

- Safety critical applications on the edge need robust and efficient models
- This is in contrast with modern methods which can be robust but very inefficient
- E3 aims to fill this niche:
 - Uses the same compute as a standard NN
 - Improves on uncertainty estimation, robustness, few-shot learning
 - Can be fine-tuned from MoE check points
 - Downside: requires a lot of memory! (But, memory is cheaper than compute)